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AFIT/GE/ENG/05-04

Abstract

Hyperspectral imagery providing both spatial and spectral information has diverse applica-

tions in remote sensing and scientific imaging scenarios. The development of the Chromotomo-

graphic Imaging System (CTIS) allows simultaneous collection of both spatial and spectral data

by a two-dimensional (2D) focal plane detector array. Post-processing of the 2D detector data

reconstructs the three-dimensional (3D) hyperspectral content of the imaged scene.

This thesis develops Estimation Theory based algorithms for reconstructing the hyperspectral

scene data. The initial algorithm developed reconstructs the 3D hyperspectral scene data cube. An

additional algorithm reconstructs a matrix comprised of one spectral dimension and one compound

spatial dimension. This spatial dimension consists of a vector sum along one spatial dimension of

the 3D hyperspectral data cube. Methods for including the effects of atmospheric attenuation on

the light over the propagation path are also included.

The algorithms are evaluated using test cases consisting of blackbody point sources, monochro-

matic extended sources and blackbody extended sources. The results show good performance for

reconstructing the absolute radiometry and spatial features of a hyperspectral scene data cube.

Reconstructed temperatures are within 4.1% of the original temperature for 2D reconstructions

and within 6.0% for vector reconstructions. These algorithms also do not significantly degrade in

the presence of noisy detector data. The radiometrically accurate reconstruction of atmospherically

attenuated detector data proves viable for wavelengths where there is sufficient photon levels at

the detector. Upon further processing reconstructed temperatures are within 3.6% of the original

temperature for 2D reconstructions and within 5.8% for vector reconstructions.

The vector algorithm also exhibits stable performance behaviour when reconstructing a tem-

porally evolving hyperspectral scene data cube. The resulting reconstructed temperature of a data

cube pixel is within 2.3% of the average temperature at the original scene location.
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RECONSTRUCTION OF CHROMOTOMOGRAPHIC IMAGING SYSTEM

INFRARED HYPERSPECTRAL SCENES

I. Introduction

T
his chapter describes the concept of hyperspectral imagery and the format of the associ-

ated hyperspectral data cubes. Hyperspectral imagery has applications in diverse imaging

scenarios providing substantial motivation to conduct further research in this area. The specific

research goals of this thesis are stated in this chapter along with an overview of the organization

of this document.

1.1 Hyperspectral Imagery

Hyperspectral imagery can be envisaged as a three-dimensional (3D) data cube consisting of

two spatial dimensions and one spectral dimension. This is further visualized by perceiving a series

of monochromatic images of the same scene stacked in the data cube. The sum of the data cube

along the spectral, or wavelength, dimension results in a broadband image of the scene within the

measured wavelengths as demonstrated in Figure 1.1. This is similar to a common photograph

if the data cube is collected in the visual spectral range. The spectral composition of a spatial

location in the scene may also be examined by viewing the location along its spectral dimension.

With the application of radiometry the temperature of the spatial location can then be determined.

Collecting multiple data cubes of a scene changing over time adds a fourth dimension to the data

set and the series of data cubes may be viewed as a hyperspectral movie.

The convention presented in the literature regards monochromatic, or panchromatic, imagery

as an image collected at one wavelength. Multispectral imagery is considered as imagery collected

at a number of wavelengths, but not normally more than about a dozen. Hyperspectral imagery is
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classed as imagery collected at any more than a dozen wavelengths. This can range from tens to

hundreds of wavelengths in currently fielded systems.

Figure 1.1: This figure shows three monochromatic images (red, green and blue) within a multi-
spectral data cube. The data cube is composed of two spatial dimensions, x and y, and one spectral
dimension, λ. The sum of the images along the spectral dimension of the data cube results in a
broadband image of the red, green and blue wavelengths.
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1.2 Research Motivation

Objects contained in an imaged scene will absorb, emit and reflect electromagnetic radiation.

The radiating properties of the objects directly correlate to their material properties. Hence analysis

of hyperspectral scene data can be used to discriminate objects contained in the imaged scene.

It is interesting to note the diverse application of hyperspectral imaging to existing and

potential fields drawn from both civilian and military applications as follows [19] [9]:

• Environmental Monitoring

– Pollutant detection in drainage systems

– Emergency response and plume tracking

– Crop health monitoring

– Mineral deposit surveying

• Military Applications

– Camouflage detection

– Landmine detection

– Battlefield monitoring of chemical and biological agents

• Law Enforcement

– Counterfeit currency detection

– Marijuana detection in natural vegetation

– Detection of illicit drug manufacturing by-products

– Target detection in Search and Rescue operations
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• Medical Applications

– Optical biopsy, eg, cancer cell detection

– Functional mapping of brain

• Manufacturing / Industrial Applications

– Weld quality inspection

– Rust detection

– Detection of surface defects in thin films

Hence the extension of the hyperspectral knowledge base is potentially applicable to a wide

range of applications in different professional disciplines.

This thesis specifically addresses the issue of post-processing hyperspectral imagery of both

static and time varying scenes. This potentially allows further applications for the collection and

processing of hyperspectral scene data in Remote Sensing roles and as a recording sensor for engi-

neering Test and Evaluation.

1.3 Research Goals

This thesis focuses on developing and evaluating reconstruction algorithms suitable for post-

processing the detector images generated by the Chromotomographic Imaging System (CTIS) de-

veloped by Mooney et al [15]. This research also complements previous work undertaken by AFIT

which has the end goal of developing a CTIS instrument. Specific areas addressed in this thesis

include:

• The development and evaluation of a CTIS detector reconstruction algorithm which maintains

absolute radiometric accuracy.

• The development and evaluation of a CTIS detector reconstruction algorithm capable of

imaging a temporally evolving input image scene.

4



• The investigation of two-dimensional versus one-dimensional CTIS detector reconstruction

algorithms in terms of absolute radiometric performance.

• The development and evaluation of a CTIS detector reconstruction algorithm which can be

applied to atmospherically attenuated detector data.

• The evaluation of the CTIS detector reconstruction algorithms in the presence of photon noise

at the detector.

1.4 Organization

Chapter II introduces current hyperspectral data collection methods and provides an overview

of the CTIS modelled in this thesis. Chapter III develops the discrete system model of the optical

components of the CTIS and derives the reconstruction algorithm required to estimate the input

hyperspectral data cube. Chapter IV presents the test case imaging scenarios used to evaluate

the performance of the reconstruction algorithms. Chapter V presents the test case results and

provides an analysis of the performance of the reconstruction algorithms. Chapter VI concludes

this thesis providing key results and recommendations for further research.
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II. Hyperspectral Data Collection

T
his chapter discusses conventional hyperspectral collection techniques and their inherent

disadvantages. The concept and development of the Chromotomographic Imaging System

(CTIS) is presented. The CTIS optical configuration and post-processing requirements are docu-

mented along with its concept of operation for collecting hyperspectral data.

2.1 Hyperspectral Data Collection Methods

As discussed in section 1.1 hyperspectral data cubes consist of two spatial dimensions and one

spectral dimension. There are several conventional methods for collecting hyperspectral information

which fundamentally entail building the data cube along either the spatial or spectral dimensions.

For example, one method scans a slit across the instrument field of view (FOV). The diffraction

induced by the slit spectrally disperses the light providing spectral data for the spatial location of

the slit. Another method is to determine spectral content based on wave interference generated

by a Michelson interferometer. A third method is to use spectral filters to capture monochromatic

images of the scene at different wavelengths. Hence this method constructs the data cube by

stacking the spatial images along the spectral dimension.

These methods all suffer from low optical throughput as the hyperspectral data is collected

piece-wise. Other disadvantages include the inability to collect complete data on temporally chang-

ing scenes and high vibration sensitivity particulary applicable to interference based instruments.

Further information on conventional hyperspectral collection systems is found in chapter 1 of [6],

chapter 2 of [11] and chapter 2 of [1].
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2.2 Chromotomographic Imaging System Overview

The hyperspectral system modelled in this thesis is known as the Chromotomographic Imaging

System (CTIS) and is founded on work by Mooney, Brodzik and An [2,3,15,16]. The configuration

of the CTIS consists of a Forward Optics System, Prism Optics System and Detector Optics System

as shown in Figure 2.1. The CTIS is also referred to as a Multiplexing Spectral Imager (MSI) due

to its operating principal of concurrently collecting both spatial and spectral information onto a

two-dimensional (2D) detector.

Figure 2.1: This figure shows the sub-systems which comprise the CTIS. These include a Forward
Optics System (FOS), Prism Optics System (POS) and a Detector Optics System (DOS). [6]

The main advantage of the CTIS is a high data throughput via the optical components and

subsequent efficient use of the collected radiation. This effectively allows the CTIS to be regarded

as a staring hyperspectral sensor with a potential application for sensing transient events in an
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object scene. However due to its multiplexing nature, the CTIS also requires a complex algorithm

to reconstruct the 3D hyperspectral cube of the object scene from the 2D image at the detector.

The United States Air Force Institute of Technology (AFIT) has conducted previous work on

the CTIS. Work conducted by Dearinger [6] developed a high fidelity Matlabr optical propagation

model of the CTIS in order to determine the spectral point spread functions (PSF) for a given optical

component configuration. Work conducted by Gustke [11] examined and developed reconstruction

algorithms based on the application of matrix inversion methods. Work conducted by LeMaster

in [13] verified the optical propagation models with laboratory equipment physically configured as

a CTIS.

Further information on the CTIS is found in chapter 2 of [6] by Dearinger with the funda-

mental sub-systems discussed as follows:

2.2.1 Forward Optics System. The Forward Optics System (FOS) senses hyperspectral

scene data and consists of a forward lens, cold field stop and an aft lens. The FOS serves to limit

the spatial extent of the scene data and performs collimation of the received light.

2.2.2 Prism Optics System. The Prism Optics System (POS) performs spectral disper-

sion of the hyperspectral scene data using a Direct Vision Prism (DVP) with the resulting effect

demonstrated in Figure 2.2. The DVP consist of two back-to-back prisms made from different opti-

cal materials. The front prism half is made from Lithium Fluoride (LiF) while the rear prism half is

made from Barium Fluoride (BaF2). Spectral dispersion is attributed to the wavelength dependent

refractive index of the optical material and the angles of the prism entrance and exit faces. The

spectral refractive indices for both LiF and BaF2 are shown in appendix A. The counteracting

geometric and refractive properties of the prism halves in the DVP allow it to be tuned to both

a specific undeviated wavelength and maximum refractive angles resulting from the minimum and
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Figure 2.2: This figure shows a simple example of the spectral dispersion effect induced by the
Direct Vision Prism (DVP). The monochromatic images in this multispectral scene are spatially
dispersed by the wavelength dependent refraction within the DVP resulting in a spatial separation
at the detector. As the DVP rotates detector images at different DVP rotation angles are collected,
with two examples shown in the figure. The DVP is also optically configured to allow light from one
wavelength to pass undeviated to the detector. In the case of the figure, light at a green wavelength
is undeviated.

maximum detectable wavelengths. The final feature of the DVP is that it rotates around the optic

axis. This enables different views of the hyperspectral scene data to be obtained at the detector.

2.2.3 Detector Optics System. The Detector Optics System (DOS) consists of a focusing

lens and focal plane array (FPA) as the detector device. Light from the DVP contains wavelength

and DVP rotation angle dependent tilts. The focusing lens focuses this tilted light at different

shifted positions on the detector. Consequently the shifts in the detector are also wavelength and

DVP rotation angle dependent.
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2.2.4 Reconstruction of Scene Hyperspectral Image. A CTIS detector image requires

post-processing by a reconstruction algorithm to estimate the corresponding input data cube. The

reconstruction algorithm uses multiple 2D detector images and the overall CTIS transfer function

to estimate the original 3D hyperspectral data cube.

As described by Gustke in [11] the state-of-the-art CTIS reconstruction algorithms rely on

linear systems principles. This requires inverting the CTIS transfer function in order to determine

the input data cube from a given CTIS detector image. Hence the need (as a minimum) to collect

detector image at the same number of DVP rotation as wavelength bins. However the resulting

matrix describing the transfer function is singular as the detector data collected at different DVP

rotation angles is not independent. This leads to the use of Singular Value Decomposition (SVD)

as described by Strang in appendix A of [18] to determine the pseudo-inverse of transfer function

matrix.

Subsequent reconstruction of the input data cube using the pseudo-inverse will contain miss-

ing hyperspectral data. Gustke conducts a trade-off analysis of reconstruction performance using

several methods to approximate the missing data including Principal Components Analysis (PCA),

Projection Onto Convex Sets (POCS) and Non-Iterative PCA. Modifications to the algorithms are

also implemented providing additional constraints to reconstructed data. Conclusions indicate a

requirement to improve the absolute radiometric accuracy of the calculated input hyperspectral

data cube generated by these reconstruction methods.
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III. System Modelling Methodology

T
his chapter develops the discrete model of the CTIS. It includes the modelling assumptions

and design parameters used to implement the model. An optical propagation model of both

the POS and DOS are developed to simulate CTIS-like detector images. The 2D and vector input

hyperspectral reconstruction algorithms are derived along with methods for including the effects of

atmospheric attenuation on the detector images.

3.1 Discrete Modelling of the Chromotomographic Imaging System

Discrete modelling of the CTIS in Matlabr uses elements of geometric optics, Zernike phase

screen generation, Rayleigh-Sommerfeld diffraction theory and Fourier optics. The model uses

geometric optics to determine the wavelength dependent shifts. Zernike phase screens are used to

simulate the rotation of the DVP. Rayleigh-Sommerfeld diffraction theory is used to calculate the

the unshifted, wavelength dependent PSFs. Fourier optics is used to determine the optical transfer

function (OTF) of the modelled components.

3.1.1 Model Assumptions. The goal of implementing a CTIS system model is to produce

CTIS-like images at the detector in order to evaluate reconstruction algorithms. These images

will exhibit the wavelength and DVP rotation angle dependent shifts discussed in section 2.2.3.

The CTIS will also induce a wavelength dependent diffractive spreading of the light. Hence the

monochromatic images in the hyperspectral cube will each undergo some blurring due to the CTIS

optical components. However this blurring is characterized by the spectral PSF of the system

which is the response of the system to a point source located at infinite range. Thus in order to

concentrate on the reconstruction algorithms, the methodology used in this thesis makes several

simplifying assumptions for the generation of detector data.
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The assumptions used in modelling the CTIS include:

3.1.1.1 Light entering the DVP is collimated. The purpose of the FOS is to collimate

the collected light and limit the spatial extent of the image. These are actually conflicting functions

as the field stop will produce some diffractive effects resulting in the light not being completely

collimated. The diffractive effects are characterized by dimensions of the field stop aperture which

limit the spatial frequency of the collected image. This can be viewed as part of the overall

PSF and can be determined by modelling the light propagation in the FOS as demonstrated by

Dearinger in [6]. An actual CTIS will also have to undergo complete PSF characterization in order

to implement an applicable reconstruction algorithm.

The CTIS model in this thesis limits the spatial extent of the scene by constructing hyper-

spectral cubes of a known dimension. This CTIS model also assumes that the light entering the

DVP is collimated. Consequently the FOS is not modelled in this thesis with the exception of using

the forward lens diameter in radiometric calculations.

3.1.1.2 The DVP is a “thin” optical medium. A thin optical component is where a

light ray enters and exits the component at approximately the same lateral coordinates with respect

to the optical axis as defined by Goodman in chapter 5 of [10]. Given the dimensional and material

characteristics of the DVP it is unlikely that it exhibits thin optical performance. However the

overall effect of the DVP is to produce wavelength and DVP rotation angle dependent tilt on the

exiting wavefront which produces a shift in the PSF at the detector. Again the degree of tilt and

the resulting shift at the detector is dependent on the PSF of the DVP.

The CTIS model in this thesis uses geometric optics to determine the location of the shift at

the detector. The calculation as detailed in section 3.2 is based on the geometry of the DVP and

the translational distance between the DVP and focusing lens. The unshifted spectral PSF (PSFλ)
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of the modelled components is then convolved with the respective shift location (equivalent to 2D

Dirac δ function) to produce the overall CTIS PSF.

3.1.1.3 Diffraction of Focusing Lens over-emphasized. The simulation is modified

to over-emphasize the diffractive effects as the actual system with parameters defined in table 3.1

produces an Airy pattern within one pixel of the detector. This is regarded as good fortune for

constructing a real system as the Airy pattern is effectively sampled as a delta function at the

detector. However in order to provide more challenge to the reconstruction algorithms developed

in section 3.4 it is desirable to broaden each PSFλ over multiple pixels. A real optical system will

also impart abberations which provide some shape to the PSF. The PSF is broadened by firstly

setting the pixel pitch to 3µm when performing the diffraction calculation, and then treating each

pixel as the larger actual detector pitches shown in table 3.1 (66.67µm and 100µm) when convolving

PSFλ with the respective shift location.
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3.1.2 Model Design Parameters. The design parameters used in the model are shown in

Table 3.1. Of note in the table is that all the lenses have the same f-number (f/#) which maintains

conservation of energy of the collected light between the model sub-systems. The selection of model

parameters follows the work conducted by Dearinger in [6] and is again aimed at producing a CTIS

system model for the generation of hyperspectral data cubes in order to evaluate reconstruction

algorithms. The development of the model proceeds using 15 spectral bins with each bin 0.2µm

wide and having bin centers as shown in Table 3.2.

Table 3.1: CTIS Model Design Parameters

Component Design Parameter Value
Object Scene Wavelength range 2.0 to 5.0µm

Forward lens Diameter 0.1m

Focal length 1.0m

Aft lens Diameter 0.022m

Focal length 0.22m

Focusing Lens Diameter 0.05m

Focal length(fFL) 0.5m

Direct Vision Prism Undeviated Wavelength 3.6 µm

Front angle 30.00o

Middle angle 0o

Aft angle 23.95o

LiF n3(2µm) 1.37875
n3(5µm) 1.32661

BaF2 n4(1.97µm) 1.46470
n4(5.14µm) 1.45014

Detector Array size 256 × 256
Pixel pitch(A) 100µm

Pixel pitch(B) 66.67µm

Reconstruction Spectral bins 15
Spectral Resolution 3

15µm

Table 3.2: Wavelength Bin Centers where each bin is 0.2µm wide.

Wavelength Bin Bin Center Wavelength Bin Bin Center
(µm) (µm)

1 2.1 9 3.7
2 2.3 10 3.9
3 2.5 11 4.1
4 2.7 12 4.3
5 2.9 13 4.5
6 3.1 14 4.7
7 3.3 15 4.9
8 3.5
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3.2 Prism Optics System Modelling

The spectral dispersion of the DVP is dependent on both the optical properties of the com-

ponent materials and the physical geometry of the DVP.

3.2.1 Spectral Refractive Indices of the DVP Materials. The spectral refractive indices in

the applicable wavelength range for both LiF and BaF2 are shown in appendix A. These refractive

indices are linearly interpolated to find the spectral refractive index at the center of each wavelength

bin as shown in Figure 3.1.
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Figure 3.1: This figure shows the linear interpolation of the spectral refractive indices for both
LiF and BaF2 at the center of each wavelength bin.
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3.2.2 Physical Geometry of the DVP. The physical geometry of the DVP is as shown

in Figure 3.2. The front prism half of the DVP is constructed from LiF with a spectral refractive

index of n2(λ) and an entrance angle of α1 = 30o. The rear prism half of the DVP is constructed

from BaF2 with a spectral refractive index of n3(λ) and an exit angle of α3 = 23.95o. The angle

of the interface between the prism halves is α2 = 0o. The refractive index of air is modelled as

a constant with n1 = 1. This DVP geometry allows light at a wavelength of λ = 3.6µm to pass

through the prism undeviated.

Figure 3.2: This figure shows the spectral dispersion effects of the Direction Vision Prism (DVP)
and labels the angles used.
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The spectral dispersion of the DVP is modelled by the application of Snell’s Law to the three

surface interfaces. As stated by Hecht in chapter 4 of [12], Snell’s Law is

ni sin θi = nt sin θt (3.1)

where ni and nt are the refractive indices of the incident and transmitted mediums, and θi and

θt are the incident and transmitted ray angles respectively. Observing that θ1 = α1, the following

expressions can then be derived for the DVP ray angles

θ2 = sin−1

(
n1

n2(λ)
sin(θ1)

)
− α1 (3.2)

θ3 = sin−1

(
n2(λ)

n3(λ)
sin(θ2)

)
+ α3 (3.3)

θ4 = sin−1

(
n3(λ)

n1
sin(θ3)

)
− α3 (3.4)

where the α1 term in equation 3.2 and α3 terms in equations 3.3 and 3.4 are applied to maintain a

constant vertical frame of reference. Knowledge of the exit ray angle, θ4, in conjunction with the

focal length, fFL, of the Focusing Lens can be used to determine the radial shift at the detector

for each wavelength by

rλ = −fFL tan θ4 (3.5)

where rλ is the radial spectral shift and the negative sign accounts for the image inversion produced

by the lens. Using equations 3.4 and 3.5 for the case of 15 wavelength bins and the interpolated

spectral refractive indices from section 3.2.1, the radial spectral shifts resulting from the DVP and

Focusing Lens are shown in Figure 3.3.
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Figure 3.3: This figure shows the radial spectral shifts (rλ) at the detector resulting from the
Direct Vision Prism and Focusing Lens for 15 spectral bins. Note that λ = 3.6µm is the undeviated
wavelength and that the separation between consecutive shifts increases as wavelength increases.

The rotation of the DVP is implemented in the model using a multiple 2D tilt Zernike phase

screen concept. However it is not required to implement the entire phase screen, only the geometric

effect of the prism on the light rays at each rotation angle. This geometric effect consists of

converting the radial spectral shift into a 2D cartesian spectral shift and is achieved using basic

trigonometry as shown in Figure 3.4 and given by

xs = rλ sin(θDV P ) (3.6)

ys = rλ cos(θDV P ) (3.7)

where rλ is the radial spectral shift, θDV P is the DVP clockwise rotation angle from vertical and

(xs, ys) are the respective cartesian shifts in x (horizontal) and y (vertical) at the detector.
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Figure 3.4: This figure shows the derivation of cartesian spectral shifts at the detector which is
dependent on the Direct Vision Prism and Focusing Lens.

By combining the DVP spectral dispersion, the DVP rotation angle and the focal length of

the focusing lens, the cartesian spectral shifts at the detector as a function of DVP rotation angle

can be obtained. The cartesian spectral shift function, S(θDV P , λ), is represented as

[xs ys] = S(θDV P , λ) (3.8)

where [xs,ys] are the pixel coordinates of the shift at the detector due to an input DVP rotation

angle, θDV P , and input spectral bin wavelength, λ. A closed form expression for S(θDV P , λ) is not

derived but simulation results are shown in Figure 3.5 for 15 DVP rotation angles. Two detector

pixel pitches are used for subsequent simulations depending on the imaging application as discussed

in section 3.3.
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Figure 3.5: This figure shows cartesian spectral shifts at the two detector pitches, 100µm and
66.67µm resulting from the spectral dispersion and rotation of Direct Vision Prism and the focal
length of the Focusing Lens. Note that this is a compound figure and the actual shifts will only
appear at the corresponding rotation angle of the DVP. Hence this figure can be thought of as a

sum of S over each rotation angle, ie,
15∑

iθ=1

S(θDV P , λ), where iθ indexes the DVP rotation angles.

A final note on modelling the DVP is that the number of DVP rotation angles is purposely

set equal to the number of spectral bins. This approach follows on from previous work conducted

by Gustke in [11] and Mooney et al in [2, 3, 15, 16] in which reconstruction of the hyperspectral

cube from the detector signal is implemented using linear algebra techniques. Hence the minimum

number of spectral DVP rotation angles required is equal to the number of spectral bins in order

to attempt a matrix inversion method. Further work is required to investigate the effects of an

unequal number of spectral bins and DVP rotation angle on the reconstruction algorithms that are

documented in section 3.4.
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3.3 Detector Optics System Modelling

Geometric optics can only be used so far when modelling an optical system. Hence Rayleigh-

Sommerfeld diffraction theory is used to model the diffraction effects of the Focusing Lens. The

first step in this approach is to calculate the unshifted PSFs for each wavelength corresponding

to each spectral bin. Modelling the DOS as a Linear Shift Invariant (LSI) system, the PSF for

each wavelength will be shift invariant and thus independent of the tilt it has acquired from the

DVP. Hence the system PSF for each DVP rotation angle can be “constructed” by combining

DVP/Focusing Lens shift data and the spectral PSFs of the DOS through a 2D-convolution (⊗)

operation.

The Rayleigh-Sommerfeld diffraction integral, as presented by Goodman in [10], describes

the wave optics propagation of light from between two parallel planes. This is mathematically

expressed as

U(x1, y1) =
1

jλ

∫∫

∑

U(x0, y0)

r01
expjkr01 cos θ dx0dy0 (3.9)

where U(x0, y0) is the electromagnetic field over a transmitting aperture plane
∑

and U(x1, y1)

is the field at a receiving plane. The distance between points on the planes is denoted r01 and

is a Pythagorean function of the perpendicular distance between the planes and transverse plane

coordinates (x0, y0) and (x1, y1). The angle of r01 with respect to the propagation normal direc-

tion is denoted as θ. The integral is applicable to monochromatic light with wavelength λ and

corresponding wave number k = 2π
λ

.
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When cast in the discrete form applicable for wave optics modelling of propagation through

a lens, the Rayleigh-Sommerfeld diffraction integral forms the sum as

U(xd, yd) ≈
f∆2

jλ

N∑

n=1

M∑

m=1

U(xn, ym)tl(xn, ym) e
j2π

λ

√
f2+(xn−xd)2+(ym−yd)2

f2 + (xn − xd)2 + (ym − yd)2
sinc

(
π∆xd

fλ

)
sinc

(
π∆yd

fλ

)

(3.10)

where f is the lens focal length, λ is the wavelength of the light, n indexes N lens samples in the

horizontal direction and m indexes M lens samples in the vertical direction. The field entering

the lens is denoted U(xn, ym) where (xn, ym) are the coordinates of discrete square samples of the

lens with a side-length of ∆. The lens transformation is tl(xn, ym). The field at a single pixel on

the detector is denoted U(xd, yd) and is indexed to determine of the overall sampled field at the

detector. The derivation of the above discrete Rayleigh-Sommerfeld diffraction sum for propagation

from a lens to a detector is shown in appendix B.

For an optical system the PSF is defined as the system response to a distant point source. A

point source located an infinite distance from the system will result in a plane wave at the receiving

aperture. As the input at the focusing lens is a plane wave there is no phase difference across

this aperture so it is modelled as an 11 × 11 matrix, ie, the small number of samples sufficiently

samples the phase across the aperture. The circular shape of the lens aperture is implemented by

the use of a masking function. As previously documented, the focal length of the Focusing Lens is

fFL = 0.5m.

The unshifted spectral PSFs are denoted PSFλ where the λ subscript indicates wavelength

dependence. Each PSFλ is calculated on a 21 × 21 matrix which provides sufficient spatial extent

for observing the resultant Airy pattern of the PSF. Note that each PSFλ represents the intensity

of the respective electromagnetic fields and is in units of photons
sec

. As discussed in section 3.1.1.3

the simulation is modified to over-emphasize the diffractive effects. This is achieved by setting the

pixel pitch to 3µm when performing the diffraction calculation and then treating each pixel as the

larger actual detector pitches shown in Table 3.1 (66.67µm and 100µm). Note that as shown in
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Figure 3.6, PSFλ becomes broader and decreases in peak intensity with increasing wavelength. To

maintain conservation of energy, the sum of each PSFλ over the 21 by 21 matrix is normalized to

sum to one.
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Figure 3.6: This figure shows the different unshifted spectral PSFλ for λ = 2, 2.9, 3.9 and 4.9µm.
Each unshifted spectral PSFλ sums to one over the 21 × 21 matrix.

The PSF of the DOS, PSFθ, at each of the DVP rotation angles will be the sum of the

unshifted PSFλ located at their appropriate geometric shift shown in Figure 3.5. This is mathe-

matically expressed as

PSFθ =

15∑

iλ=1

PSFλ ⊗ S(θDV P , λ) (3.11)

where iλ indexes each wavelength bin. The PSF at the detector, PSFθ=0o , for the vertical DVP

rotation angle, θDV P = 0o is shown in Figure 3.7.
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Figure 3.7: This figure shows the PSF at the detector for the vertical DVP rotation angle,
PSFθ=0o , for both a 66.67µm and 100µm detector pixel pitch.

It is evident how tailoring the extent of the detector PSF can be utilized for specific imaging

scenario classes. The PSF resulting from the 100µm pixel pitch extends just under half the linear

dimension of the detector. This allows an input image up to half the equivalent size of the detector

to be collected when the image convolution with the PSF is conducted. Subsequent test cases in

chapter IV, which are constructed to have a spatial extent of 100×100 pixels, will use this detector

PSF.

Another application may require viewing a scene with a more limited spatial extent. The

PSF resulting from the 66.67µm pixel pitch is spread further across the detector allowing a larger

separation and thus better discrimination of consecutive spectral PSFs. However larger input

images will be prone to projection off the edges of the detector. To simulate this imaging scenario

several test cases in chapter IV are constructed with input hyperspectral data cubes which have a

spatial extent of 20 × 20 pixels.
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As shown by Goodman in chapter 2 of [10], the output of a LSI imaging system can be

expressed as the 2D convolution of the input with the system transfer function. In the notation

used in this thesis this is represented as

I(θDV P , xd, yd) = PSFθ(λ, θDV P , xd, yd) ⊗ O(λ, u, v) (3.12)

where I(θDV P , xd, yd) is a particular image at the detector resulting from the input object hyper-

spectral cube O(λ, u, v).
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3.4 Scene Object Image Reconstruction

Once the system obtains a particular image at the detector, I(θDV P , xd, yd), the goal is to

then reconstruct the hyperspectral data cube which the system sensed to produce that image. This

requires a reconstruction algorithm which has been previously implemented using deterministic

linear algebra methods by Gustke in [11] and Mooney et al in [2, 3, 15,16]. In an attempt to make

use of physical aspects of the hyperspectral data cube and improve reconstruction results, this

thesis implements an Estimation Theory based reconstruction algorithm. Further information on

Estimation Theory is found in [21] by Van Trees.

3.4.1 Derivation of Two-Dimensional Reconstruction Algorithm. The derivation of the

2D reconstruction update equation begins with equation 3.12 and then explicitly states the image

function as being dependent on both λ and θ. The convolution sum expands out as follows:

I(θDV P , xd, yd) = PSFθ(λ, θDV P , xd, yd) ⊗ O(λ, u, v)

i(λ, θ, x, y) =

N∑

u=1

N∑

v=1

15∑

λ=1

O(λ, u, v)PSFθ(λ, θ, x − u, y − v)

(3.13)

where the number of pixels on a detector side is N = 256, and λ is now treated as an index

into a wavelength matrix and not the actual wavelength value. The notation of i(λ, θ, x, y) and

PSFθ(λ, θ, x, y) also now explicitly show the dependence of the detector image and PSF on wave-

length and the rotation angle of the DVP. The change to lower case also indicates that i(λ, θ, x, y)

is variable; specifically a deterministic function of (λ, θ, x, y). The subscripts on (xd, yd) and θDV P

are dropped to condense the notation.
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It is then assumed that the photons arriving at the detector, or the data at the detector,

d(λ, θ, x, y), is composed of a deterministic image resulting from equation 3.13 plus random back-

ground noise, n(λ, θ, x, y). This can be expressed as

d(λ, θ, x, y) = i(λ, θ, x, y) + n(λ, θ, x, y) (3.14)

The addition of a deterministic variable and a random variable results in a sum which is

itself a random variable. Hence d(λ, θ, x, y) is regarded as a random variable. Note that in this

notation a lower case letter indicates a random or deterministic variable while the corresponding

upper case letter denotes a realization of that variable. For example, D is a particular realization

of the random variable d.

The physics of photon noise can be modelled as a Poisson random variable as indicated by

Dereniak and Boreman in chapter 5 of [7]. As shown by Papoulis and Pillai in chapter 4 of [17] the

basic form of the Poisson probability mass function (PMF) is

P [w = k] =
βk e−β

k!
(3.15)

where w is a discrete random variable, k = {0, 1, 2, ..., ∞}, and β is equal to both the mean and

variance of w. As such the arrival of photons at the detector can be modelled as a Poisson random

variable with a mean equal to the deterministic image, i(λ, θ, x, y), expressed as

β = E[d(λ, θ, x, y)] = i(λ, θ, x, y) (3.16)

Note that for this application the realizations of the Poisson random variables are independent and

identically distributed (iid).
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The probability that the data, or number of photons, at one DVP rotation angle, θo, at one

pixel in the detector, (xo, yo), can then be found by equating equation 3.16 with the Poisson PMF

at equation 3.15 as

P [d(λ, θ, x, y) = D(θo, xo, yo)] =
i(λ, θo, xo, yo)

D(θo,xo,yo)e−i(λ,θo,xo,yo)

D(θo, xo, yo)!
(3.17)

where D(θo, xo, yo) is a realization of the random variable d(λ, θ, x, y) at the pixel (xo, yo) at DVP

rotation angle θo.

Equation 3.17 will hold for every pixel in the detector at each DVP rotation angle. As photon

arrival is iid, the expression for the entire probability of photons in the data cube at the detector

can be expressed as

P [d = D ∀ x, y, θ] =

256∏

x=1

256∏

y=1

15∏

θ=1

i(λ, θ, x, y)D(θ,x,y)e−i(λ,θ,x,y)

D(θ, x, y)!
(3.18)

which is the product of the probabilities for the individual pixels at each DVP rotation angle.

In order to maximize the probability of photons at the detector the maxima of equation 3.18

needs to be determined. To ease the formulation of the derivative the natural logarithm of both

sides of equation 3.18 is taken. As the natural logarithm is a monotonically increasing function,

maximizing ln{P [d = D ∀ x, y, θ]} will also maximize P [d = D ∀ x, y, θ]. Accordingly, the natural

logarithm of equation 3.18 is

ln{P [d = D]} =
256∑

x=1

256∑

y=1

15∑

θ=1

ln
{

i(λ, θ, x, y)D(θ,x,y)
}

+ ln
{

e−i(λ,θ,x,y)
}
− ln{D(θ, x, y)!}

=

256∑

x=1

256∑

y=1

15∑

θ=1

D(θ, x, y)ln{i(λ, θ, x, y)} − i(λ, θ, x, y) − ln{D(θ, x, y)!}

(3.19)
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where the logarithm relationships: logaxr = rlogax; logaxy = logax + logay; and loga
x
y

= logax −

logay from [20] are applicable.

The photon probability at the detector, given a point in an input hyperspectral data cube

O(λo, uo, vo), is now maximized by taking the derivative of equation 3.19 as follows:

d ln{P [d = D]}
d O(λo, uo, vo)

=

256∑

x=1

256∑

y=1

15∑

θ=1

D(θ, x, y)

i(λ, θ, x, y)

d i(λ, θ, x, y)

d O(λo, uo, vo)
− d i(λ, θ, x, y)

d O(λo, uo, vo)
(3.20)

Note that the derivative associated with the −ln{D(θ, x, y)!} term goes to zero as D, being a

realization of the random variable d, is a constant.

Taking the derivative of equation 3.13 with respect to O(λo, uo, vo) results in

d i(λ, θ, x, y)

d O(λo, uo, vo)
=

d

d O(λo, uo, vo)

N∑

u=1

N∑

v=1

15∑

θ=1

O(λ, u, v)PSFθ(λ, θ, x − u, y − v)

=
d

d O(λo, uo, vo)
O(λo, uo, vo)PSFθ(λo, θ, x − uo, y − vo)

= PSFθ(λo, θ, x − uo, y − vo)

(3.21)

as the derivative is zero where (λ, u, v) 6= (λo, uo, vo).

Substitution of equation 3.21 into equation 3.20 yields

d ln{P [d = D]}
d O(λo, uo, vo)

=
256∑

x=1

256∑

y=1

15∑

θ=1

D(θ, x, y)

i(λ, θ, x, y)
× PSFθ(λo, θ, x − uo, y − vo) −

d i(λ, θ, x, y)

d O(λo, uo, vo)

(3.22)
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Also observe from equation 3.21 that

256∑

x=1

256∑

y=1

15∑

θ=1

d i(λ, θ, x, y)

d O(λo, uo, vo)
=

256∑

x=1

256∑

y=1

15∑

θ=1

PSFθ(λo, θ, x − uo, y − vo) (3.23)

= 15 ≡ Λ

where Λ= 15, which is equivalent to the number of spectral bins.

Upon substituting equation 3.23 into equation 3.22 the result becomes

d ln{P [d = D]}
d O(λo, uo, vo)

=
256∑

x=1

256∑

y=1

15∑

θ=1

D(θ, x, y)

i(λ, θ, x, y)
× PSFθ(λo, θ, x − uo, y − vo) − Λ (3.24)

The derivative is set to zero and Λ is added to both sides resulting in

Λ =

256∑

x=1

256∑

y=1

15∑

θ=1

D(θ, x, y)

i(λ, θ, x, y)
× PSFθ(λo, θ, x − uo, y − vo) (3.25)

Both sides of equation 3.25 are multiplied by an estimate of the complete hyperspectral data

cube Ô(λ, u, v) and divided by Λ to obtain

Ô(λ, u, v) =
Ô(λ, u, v)

Λ

256∑

x=1

256∑

y=1

15∑

θ=1

D(θ, x, y)

i(λ, θ, x, y)
× PSFθ(λ, θ, x − u, y − v) (3.26)

It is now observed that the 3D sum over (x, y, θ) has the form of an autocorrelation as shown

by Goodman in chapter 2 of [10]. Thus the Autocorrelation Theorem of Fourier Transform the-

ory can be applied in the implementation of equation 3.26 as an iterative update equation. The
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Autocorrelation Theorem states that

F






∞∫∫

−∞

g(ξ, η)h∗(ξ − x, η − y) dξdη




 = G(fx, fy)H∗(fx, fy)

and

F{g(x, y)h∗(x, y)} =

∞∫∫

−∞

G(ξ, η)H∗(ξ − fx, η − fy) dξdη

(3.27)

where F indicates a Fourier Transform between the transform pairs of g(ξ, η) and G(fx, fy), and

also h(x, y) and H(fx, fy).

As previously discussed the scene object hyperspectral cube, O(λ, u, v), occurs over two spatial

dimensions and one wavelength dimension. However the data at the detector, d(λ, θ, x, y), is a

function of four dimensions, with the DVP rotation angle being the additional dimension. Thus it

becomes necessary for the iterative implementation of equation 3.26 to be conducted in two stages

as shown in Figure 3.8. The algorithm begins with an initial estimate of O which is labelled Ô

Figure 3.8: This figure shows the processing steps required in implementing equation 3.26 as an
iterative estimation algorithm for reconstructing the scene hyperspectral data cube.

and arbitrarily set to all ones. The algorithm then makes use of the Autocorrelation Theorem

at equation 3.27 by summing the product of each F{Ô} wavelength slice with the corresponding

31



OTFλ slice. Recall that the OTF is the Fourier Transform of the intensity PSF. Thus OTFλ is the

Fourier Transform of PSFθ summed over each rotation angle of the DVP, ie,

OTFλ(λ, x, y) = F
{

15∑

θ=1

PSFθ(λ, θ, x, y)

}
(3.28)

where θ is indexing the DVP rotation angle positions. The Inverse Fourier Transform (F−1) of this

product provides an estimate of the data, D̂θ, at each DVP rotation angle. An estimate of the data

in each wavelength bin, D̂λ, is then found by summing the product of Fourier Transform of each

DVP rotation angle slice of D̂θ with the complex conjugate of each OTFθ slice where

OTFθ(θ, x, y) = F
{

15∑

λ=1

PSFθ(λ, θ, x, y)

}
(3.29)

which is equivalent to the Fourier Transform of the detector PSF shown in Figure 3.7. The di-

mensions of the estimate of the hyperspectral cube object, Ô, and the estimate of the data at the

detector, D̂λ, now correspond and the algorithm can be updated with a new Ô estimate where

Ônew =
Ôold × D̂λ

Λ
(3.30)

Thus equation 3.26 is implemented in an iterative estimation algorithm where the scene object

hyperspectral data cube as an update equation of

Ônew(λ, u, v) =
Ôold(λ, u, v)

Λ

256∑

x=1

256∑

y=1

15∑

θ=1

D̂(θ, x, y)

i(λ, θ, x, y)
× PSFθ(λ, θ, x − u, y − v)

(3.31)
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3.4.2 Derivation of Vector Reconstruction Algorithm. In some hyperspectral imaging

applications it may be sufficient to have only one-dimensional (1D) spatial information in the

reconstructed hyperspectral scene. Using a 1D vector of the detector image for scene reconstruction

offers significant processing time improvements in both collecting the detector data and within the

reconstruction algorithm itself. When paired with the CTIS which inherently allows for fast data

collection, this approach could potentially be applied to imaging a temporally evolving scene and

also some real-time applications.

The choice of how to turn the 2D detector image into a vector takes advantage of the in-built

functionality available in some infrared (IR) detector arrays. The vector is formed by summing the

image in the columns (or rows) of the detector image. The follow-on work in this thesis will be

applicable to the sum of each column in the detector which forms a horizontal, or x, vector sum of

the detector image. However it is also observed that with either an instrument modification which

includes a beam-splitter and additional DOS offset at right-angles, or a phasing between vector

collection, both the horizontal and vertical vectors could be collected. This would allow collection

of pseudo-2D detector data permitting the reconstruction of more spatial scene information. The

x vector sum resulting from the 2D 66.67µm pixel pitch PSF in Figure 3.7 is shown in Figure 3.9.
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Figure 3.9: This figure shows the x vector sum at six DVP rotation angles of the detector PSF
for the 66.67µm detector pixel pitch.
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The derivation of the vector reconstruction algorithm begins with summing along the vertical,

or y, direction of equation 3.14 which results in

d(λ, θ, x, y) = i(λ, θ, x, y) + n(λ, θ, x, y)

256∑

y=1

d(λ, θ, x, y) =

256∑

y=1

{i(λ, θ, x, y) + n(λ, θ, x, y)}

dx(λ, θ, x) = ix(λ, θ, x) + nx(λ, θ, x)

(3.32)

where dx(λ, θ, x), ix(λ, θ, x) and nx(λ, θ, x) are vector sums of the corresponding 2D detector pa-

rameters.

The mean of the vector detector data is again expressed as

β = E[dx(λ, θ, x)] = ix(λ, θ, x) (3.33)

which can be substituted into the Poisson PMF at equation 3.15 resulting in

P [dx(λ, θ, x) = Dx(θo, xo)] =
ix(λ, θo, xo)

Dx(θo,xo)e−ix(λ,θo,xo)

Dx(θo, xo)!
(3.34)

where Dx(θo, xo) is a realization of the random variable dx(λ, θ, x) at the pixel xo and DVP rotation

angle θo. The probability of photon arrival at each pixel is iid. Hence when considering all the

pixels in the vector at each DVP rotation angle the total probability becomes

P [dx = Dx ∀ x, θ] =
256∏

x=1

15∏

θ=1

ix(λ, θ, x)Dx(θ,x)e−ix(λ,θ,x)

Dx(θ, x)!
(3.35)

which is the product of the probabilities for the individual pixels at each DVP rotation angle.
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The maxima of equation 3.35 needs to be determined to maximize the probability of photons

at the detector. This is again performed by firstly taking the natural logarithm of both sides of

equation 3.35 as

ln{P [dx = Dx]} =

256∑

x=1

15∑

θ=1

Dx(θ, x)ln{ix(λ, θ, x)} − ix(λ, θ, x) − ln{Dx(θ, x)!}

(3.36)

The photon probability given a point in an input hyperspectral data matrix O(λo, uo) is now

maximized by taking the derivative of equation 3.36 as follows:

d ln{P [dx = Dx]}
d O(λo, uo)

=

256∑

x=1

15∑

θ=1

Dx(θ, x)

ix(λ, θ, x)

d ix(λ, θ, x)

d O(λo, uo)
− d ix(λ, θ, x)

d O(λo, uo)
(3.37)

where O(λo, uo) is constructed from O(λo, uo, vo) by summing along the vo direction.

In order to include a similar substitution as used in the 2D algorithm the detector PSF must

again be examined. Proceeding from equation 3.13 of the 2D case the dimension reduction on i, O

and PSFθ begins with summing both sides over y to produce the x vector sum image ix(λ, θ, x) as

i(λ, θ, x, y) =

256∑

u=1

256∑

v=1

15∑

λ=1

O(λ, u, v)PSFθ(λ, θ, x − u, y − v)

256∑

y=1

i(λ, θ, x, y) =
256∑

y=1

{
256∑

u=1

256∑

v=1

15∑

λ=1

O(λ, u, v)PSFθ(λ, θ, x − u, y − v)

}

ix(λ, θ, x) =

256∑

y=1

{
256∑

u=1

256∑

v=1

15∑

λ=1

O(λ, u, v)PSFθ(λ, θ, x − u, y − v)

}
(3.38)

The Fourier Transform of both sides of equation 3.38 is then performed turning the convolu-

tion within the sum into a product of Fourier Transforms as

F{ix(λ, θ, x)} =
256∑

y=1

F{O(λ, u, v)} × OTFθ(λ, θ, u, v) (3.39)
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where the Fourier Transform of the PSF is the OTF and the Convolution Theorem is utilized.

The Inverse Fourier Transform of equation 3.39 is then written explicitly as

ix(λ, θ, x) =
256∑

u=1

256∑

v=1

[
256∑

y=1

F{O(λ, u, v)} × OTFθ(λ, θ, u, v)

]
e

j2π(xu+yv)
N

=

256∑

u=1

256∑

v=1

[F{O(λ, u, v)} × OTFθ(λ, θ, u, v)] e
j2π(xu)

N

256∑

y=1

1e
j2π(yv)

N

(3.40)

where the order of the sums is modified and the exponential product is separated. Note that the

sum of y is now separable and is the Inverse Fourier Transform of a constant which results in

ix(λ, θ, x) =

256∑

u=1

256∑

v=1

[F{O(λ, u, v)} × OTFθ(λ, θ, u, v)] e
j2π(xu)

N δ[v]

(3.41)

where δ[v] is a modified discrete Kronecker delta function with

δ[v] = 1 for v = 1

= 0 for v 6= 1 (3.42)

The delta function serves to eliminate the sum over v as

ix(λ, θ, x) =

[
256∑

v=1

δ[v]

]
256∑

u=1

[F{O(λ, u, v)} × OTFθ(λ, θ, u, v)] e
j2π(xu)

N

=

256∑

u=1

[F{O(λ, u, 1)} × OTFθ(λ, θ, u, 1)] e
j2π(xu)

N

=

256∑

u=1

[F{O(λ, u, 1)} × OTFθv(λ, θ, u)] e
j2π(xu)

N

(3.43)
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where OTFθv(λ, θ, u) = OTFθ(λ, θ, u, 1). Note that the 3D OTF reduces to the baseband slice at

v = 1 of the four dimensional (4D) OTF. This is alternately viewed as the main horizontal axis of

spatial image.

The Inverse Fourier Transform of the right-hand-side (RHS) of equation 3.43 is then taken

to produce the final expression for ix(λ, θ, x) as

ix(λ, θ, x) =
256∑

u=1

15∑

λ=1

O(λ, u, 1)PSFθ(λ, θ, x − u, 1)

=

256∑

u=1

15∑

λ=1

Ox(λ, u)PSFθx(λ, θ, x − u)

(3.44)

where Ox(λ, u) = O(λ, u, 1) and PSFθx(λ, θ, x) is a vector representation of the 2D detector PSF at

the baseband axis. The implementation of the vector reconstruction algorithm uses the horizontal

cross-section of the 2D OTF at the center of the detector as OTFθx(λ, θ, u). The Inverse Fourier

Transform of OTFθv(λ, θ, u) then provides PSFθx(λ, θ, x).

Similar to equation 3.24 in the 2D case, equation 3.37 becomes

d ln{P [dx = Dx]}
d O(λo, uo)

=
256∑

x=1

15∑

θ=1

Dx(θ, x)

ix(λ, θ, x)
× PSFθx(λo, θ, x − uo) − Λx (3.45)

for the vector case when maximizing the photon probability for a given an input O(λo, uo) where

Λx = 15.

In an identical approach to the 2D reconstruction algorithm, equation 3.45 can be imple-

mented as an iterative vector reconstruction algorithm using

Ônew(λ, u) =
Ôold(λ, u)

Λx

256∑

x=1

15∑

θ=1

D̂x(θ, x)

ix(λ, θ, x)
× PSFθx(λ, θ, x − u)

(3.46)
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3.4.3 Methods for Including Atmospheric Transmission Coefficients. Light at IR wave-

lengths propagating through the atmosphere will experience wavelength dependent attenuation.

This attenuation is characterized by the atmospheric transmission coefficient, denoted tatm(λ),

with values as shown in Figure 3.10.
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Figure 3.10: This figure shows the wavelength dependent atmospheric transmission coefficient,
tatm(λ), with the pseudo-continuous data in the upper subplot taken from [14]. This data is then
sampled by averaging over each wavelength bin as shown in the lower subplot.
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The pseudo-continuous data for tatm(λ) is available at Gemini Observatory website at [14],

where the data is applicable for an observer at an altitude of 20 kilometers looking straight down

at the Earth. This data is then sampled by averaging over each wavelength bin for subsequent

inclusion into the reconstruction algorithms with the discrete tatm(λ) for 15 wavelength bins shown

in Table 3.3.

Table 3.3: Discrete Atmospheric Transmission Coefficients (tatm(λ))

Bin Bin Center tatm(λ) Bin Bin Center tatm(λ) Bin Bin Center tatm(λ)
λi (µm) λi (µm) λi (µm)
1 2.1 0.9158 6 3.1 0.8177 11 4.1 0.5365
2 2.3 0.9603 7 3.3 0.7221 12 4.3 0.0003
3 2.5 0.6089 8 3.5 0.9243 13 4.5 0.2875
4 2.7 0.0308 9 3.7 0.9535 14 4.7 0.7868
5 2.9 0.5881 10 3.9 0.8903 15 4.9 0.7874

There are two approaches for including tatm(λ) in the reconstruction as follows:

3.4.3.1 Direct Inversion of tatm(λ). This method first uses the algorithm in either

section 3.4.1 or 3.4.2 to reconstruct the input scene hyperspectral data cube. It is then assumed that

the number of photons in each wavelength bin has been attenuated by the corresponding tatm(λ).

Hence the reconstruction algorithm has estimated an atmospherically attenuated input data cube.

Thus in order to find the actual input data cube each wavelength bin of the reconstructed data

cube is divided by tatm(λ) as

Ô(λ, u, v) =
Ôatm(λ, u, v)

tatm(λ)
(3.47)

where Ôatm(λ, u, v) is the output from the reconstruction algorithm and tatm(λ) is the respective

atmospheric coefficient for each wavelength bin. Though simple in its implementation, this method

is prone to error which increases as tatm(λ) decreases, ie, error increases in the bins with more

atmospheric attenuation.
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3.4.3.2 Inclusion of tatm(λ) within the reconstruction algorithm. This method in-

cludes the atmospheric attenuation information within the reconstruction algorithm. This requires

rederivation of the algorithm to include tatm(λ). Though equally applicable to both the 2D and

vector reconstruction algorithm, only the derivation for the attenuated x vector reconstruction

algorithm is explicitly shown.

This derivation proceeds by modifying data at the detector at equation 3.32 as

dx(λ, θ, x) = ix(λ, θ, x) × tatm(λ) + nx(λ, θ, x)

(3.48)

which recognizes that the deterministic image at the detector, ix(λ, θ, x), has been subject to a

wavelength dependent atmospheric attenuation tatm(λ).

The mean of the vector detector data is now expressed as

β = E[dx(λ, θ, x)] = ix(λ, θ, x) × tatm(λ) (3.49)

which can be substituted into the Poisson PMF at equation 3.15 resulting in

P [dx(λ, θ, x) = Dx(θo, xo)] =
[ix(λ, θo, xo)tatm(λ)]Dx(θo,xo)e[−ix(λ,θo,xo)tatm(λ)]

Dx(θo, xo)!
(3.50)

When extended to all the pixels in the vector and given that the photon probability of the

pixels are idd, the total probability becomes

P [dx = Dx ∀ x, θ] =

256∏

x=1

15∏

θ=1

[ix(λ, θ, x)tatm(λ)]Dx(θ,x)e[−ix(λ,θ,x)tatm(λ)]

Dx(θ, x)!
(3.51)

which is the product of the probabilities for the individual pixels and wavelength bins.
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The maxima of equation 3.51 must be determined to maximize the probability of photons

at the detector. This is again performed by firstly taking the natural logarithm of both sides of

equation 3.51 as

ln{P [dx = Dx]} =

256∑

x=1

15∑

θ=1

Dx(θ, x)ln{ix(λ, θ, x)tatm(λ)} − ix(λ, θ, x)tatm(λ) − ln{Dx(θ, x)!}

=

256∑

x=1

15∑

θ=1

Dx(θ, x)ln{ix(λ, θ, x)} + Dx(θ, x)ln{tatm(λ)} · · ·

−ix(λ, θ, x)tatm(λ) − ln{Dx(θ, x)!}

(3.52)

The photon probability given a point in an input hyperspectral data matrix O(λo, uo) is now

maximized by taking the derivative of equation 3.52 as follows:

d ln{P [dx = Dx]}
d O(λo, uo)

=
256∑

x=1

15∑

θ=1

Dx(θ, x)

ix(λ, θ, x)

d ix(λ, θ, x)

d O(λo, uo)
+

Dx(θ, x)

tatm(λ)

d tatm(λ)

d O(λo, uo)
− d ix(λ, θ, x)tatm(λ)

d O(λo, uo)

=

256∑

x=1

15∑

θ=1

Dx(θ, x)

ix(λ, θ, x)

d ix(λ, θ, x)

d O(λo, uo)
− tatm(λ)

d ix(λ, θ, x)

d O(λo, uo)

(3.53)

as d tatm(λ)
d O(λo,uo) = 0 ∀ λ as tatm(λ) is a constant for each wavelength bin.

The substitution of

d ix(λ, θ, x)

d O(λo, uo)
= PSFθx(λ, θ, x − uo) (3.54)

is now applied to equation 3.53 resulting in

d ln{P [dx = Dx]}
d O(λo, uo)

=

256∑

x=1

15∑

θ=1

Dx(θ, x)

ix(λ, θ, x)
× PSFθx(λ, θ, x − uo) − tatm(λ)PSFθx(λ, θ, x − uo)

=

256∑

x=1

15∑

θ=1

Dx(θ, x)

ix(λ, θ, x)
× PSFθx(λ, θ, x − uo) − Υ

(3.55)
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where Υ=
∑15

λ=1 tatm(λ), ie, the sum of each atmospheric transmission coefficient. Note that the

maximum possible value of each tatm(λ) is 1 so the feasible values of 0 < Υ ≤ Λ apply. As an

example, Υ ≈ 9.8 for the 15 wavelength bins shown in Figure 3.10.

The atmospherically attenuated vector reconstruction algorithm can be implemented by using

equation 3.55 to modify the update equation of the iterative vector reconstruction algorithm as

Ônew(λ, u) =
Ôold(λ, u)

Υ

256∑

x=1

15∑

θ=1

D̂x(θ, x)

ix(λ, θ, x)
× PSFθx(λ, θ, x − u)

(3.56)

with modifications to the algorithm flow diagram as shown in Figure 3.11.

Figure 3.11: This figure shows the processing steps required in implementing equation 3.56 as
an iterative estimation algorithm for reconstructing the atmospherically attenuated scene hyper-
spectral data cube.

43



IV. Test Case Scenarios

T
his chapter establishes the test cases used to verify the performance of the reconstruction

algorithms in section 3.4. For each test case an input hyperspectral data cube for the

imaging scenario is generated. The effect of atmospheric attenuation is also applied to several

of the input data cubes. The input object data cubes, O(λ, u, v), are used as the input to the

CTIS model which produces the corresponding CTIS detector images. Additional photon noise

is also applied to several of the detector images. The detector images provide the input to the

reconstruction algorithms which provide an estimate, Ô(λ, u, v), of the original input hyperspectral

data cube. The chapter concludes with Table 4.4 which summarizes the test cases.
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4.1 Binary Star Pair Test

This test generates a hyperspectral cube consisting of a distant binary star pair with each star

having a different temperature. The cube is 20 × 20 pixels in the spatial dimensions and contains

15 wavelength bins. The parameters of the stars used are shown in Table 4.1.

Table 4.1: Star Model Parameters

Component Model Parameter Value
Star 1 Temperature 10000oK

Radius 2.5 solar radii
Distance 50 light years

Star 2 Temperature 5000oK
Radius 1.1 solar radii
Distance 50 light years

Note that 1 solar radii = 6.96×108m and the model simulates a binary star pair consisting of

an A type and G type star as defined in [5]. Each star is treated as a blackbody and using radiometry

detailed by Dereniak and Boreman in [7] the number of photons, or photon flux (Φp) in photons
sec

,

at the detector can be determined. By selecting a detector integration time of ∆t = 0.001sec the

binary star data cube is generated as shown in Figure 4.1. The composition of the data cube is

also shown in Figure 4.2 where the sum of photons in each wavelength bin for each star is graphed.

The resulting CTIS image and x vector sums are shown in Figures 4.3 and 4.4 respectively. The

resulting CTIS image and x vector sums are also shown in Figures 4.5 and 4.6 respectively for when

the effects of atmospheric attenuation is implemented.
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Figure 4.1: This figure shows four wavelength bins of the binary star hyperspectral data cube.
The cube has spatial extent of 20 × 20 pixels with the stars being separated by six pixels. The
number of photons in each bin is indicated by the color bar.
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Figure 4.2: This figure shows another view of the binary star hyperspectral cube derived by
summing the photons in each bin for each star. Note that both plots exhibit the Planckian shape
of the modelled blackbody stars.
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Figure 4.3: This figure shows the detector image at the four DVP rotation angles resulting from
the CTIS sensing the binary star hyperspectral data cube when no atmospheric attenuation is
considered.
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Figure 4.4: This figure shows the x vector sum of the detector image for the binary star data
cube. No atmospheric attenuation is implemented in determining these detector vectors.
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Figure 4.5: This figure shows the detector image at the four DVP rotation angles resulting
from the CTIS sensing the binary star hyperspectral data cube when the effects of atmospheric
attenuation is applied.
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Figure 4.6: This figure shows the x vector sum of the detector image for the binary star data
cube. These detector vectors implement atmospheric attenuation.
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4.2 Spatially Separate Monochromatic Source Test

The binary star test case in section 4.1 contains an input hyperspectral scene with limited

spatial information. A follow-on class of test cases construct hyperspectral scenes with both spectral

and spatial features. A similar hyperspectral scene test case to that used by Gustke in chapter 3

of [11] is generated. This test uses five spatially separate monochromatic extended sources in five

different wavelength bins. Thus the source “bars” are also spectrally separated. The composition

of the bar test hyperspectral data cube is shown in Figure 4.7 where the spatial extent of the scene

is 100 × 100 pixels. The resulting CTIS detector image is shown in Figure 4.8. Figure 4.9 also

shows the detector image with the addition of random noise.
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Figure 4.7: The bar test consists of five monochromatic sources in five spectral bins. The sources
have a uniform five photons across their extent. The bins that are not shown contain zero photons.
The final subplot shows a total 2 − 5µm view of the source data.
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Figure 4.8: This figure shows the detector image at four rotation angles resulting from the CTIS
model sensing the 100 × 100 pixel bar test hyperspectral data cube. The CTIS model spatially
disperses the sources as a function of wavelength and DVP rotation angle.
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Figure 4.9: This figure shows the addition of Poisson random noise to the CTIS detector image
of the bar test hyperspectral data cube.
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A smaller bar test hyperspectral data cube with identical spatial and spectral features to

Figure 4.7 is also generated on a 20 × 20 pixel spatial scene. This data cube is used to show the

utility of the vector reconstruction algorithm when reconstructing smaller spatial scenes. The small

bar test data cube is used with the 66.67µm pixel pitch detector with the resulting noiseless CTIS

detector image shown in Figure 4.10 and noiseless image x vector shown in Figure 4.11.
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Figure 4.10: This figure shows the detector at four rotation angles resulting from the CTIS
model sensing the 20×20 pixel bar test hyperspectral data cube. The major difference (apart from
bar size) compared to Figure 4.8 is that the spectrally dispersed bars are spatially separated. Note
also how the expected bar-shape changes. This is a function of the PSF of the optics in that PSF
width increases with wavelength.
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Figure 4.11: This figure shows the x vector sum of the detector image for the small bar test
hyperspectral data cube. The vector again shows the spatial separation of the dispersed bars.
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With the addition of noise the resulting CTIS detector image and x vector sum are shown in

Figures 4.12 and 4.13 respectively.
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Figure 4.12: This figure shows the addition of random noise to the CTIS image of the 20 × 20
pixel bar test hyperspectral data cube.
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Figure 4.13: This figure shows the x vector sum of the noisy detector image for the small bar
test hyperspectral data cube.
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4.3 Spatially Overlapping Monochromatic Source Test

This test case uses monochromatic source bars which spatially overlap within the hyperspec-

tral data cube. The overlapping bar test cube with a spatial extent of 100× 100 pixels is generated

using source bars in four spectral bins as shown in Figure 4.14. The resulting CTIS detector image

is shown in Figure 4.15. Figure 4.16 also shows the detector image with the addition of random

noise.
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Figure 4.14: The overlapping bar test consists of four monochromatic sources in four spectral
bins. The sources have a uniform five photons across their extent. The bins that are not shown
contain zero photons. The final subplot shows a total 2 − 5µm view of the source data.
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Figure 4.15: This figure shows the detector image at four rotation angles resulting from the
CTIS model sensing the 100 × 100 pixel overlapping bar test hyperspectral data cube.
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Figure 4.16: This figure shows the addition of Poisson random noise to the CTIS detector image
of the 100 × 100 pixel overlapping bar test hyperspectral data cube.
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A smaller overlapping bar test hyperspectral data cube is also generated on a 20 × 20 pixel

spatial scene. The small overlapping bar test data cube is used with the 66.67µm pixel pitch

detector with the resulting noiseless CTIS detector image shown in Figure 4.17 and noiseless image

x vector shown in Figure 4.18.
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Figure 4.17: This figure shows the detector at four rotation angles resulting from the CTIS
model sensing the 20 × 20 pixel bar test hyperspectral data cube. Again the spectrally dispersed
bars are spatially separated with the smaller scene image.
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Figure 4.18: This figure shows the x vector sum of the detector image for the small overlapping
bar test hyperspectral data cube. The vector again shows the spatial separation of the dispersed
bars.
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With the addition of noise the resulting CTIS detector image and x vector sum are shown in

Figures 4.19 and 4.20 respectively.
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Figure 4.19: This figure shows the addition of random noise to the CTIS image of the 20 × 20
pixel overlapping bar test hyperspectral data cube.
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Figure 4.20: This figure shows the x vector sum of the noisy detector image for the small
overlapping bar test hyperspectral data cube.

56



4.4 Monochromatic Numbers Source Test

The final monochromatic source test consists of a series of numbers in consecutive wavelength

bins as shown in Figure 4.21. The lack of uniformity in the handwritten numbers provides minimal
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Figure 4.21: The numbers test consists of fifteen monochromatic sources in the different spectral
bins. The sources have a uniform one hundred photons across their extent. The final subplot shows
a total 2 − 5µm view of the source data.

spatial correlation between consecutive wavelength bins. Hence this should provide a “worst case”

scenario increasing the challenge provided to the reconstruction algorithm.
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The noiseless CTIS detector image resulting from the numbers test data cube is shown in

Figure 4.22. Similarly, the noisy detector image and atmospherically attenuated detector image are

shown in Figures 4.23 and 4.24 respectively.
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Figure 4.22: This figure shows the detector at four rotation angles resulting from the CTIS
model sensing the numbers test hyperspectral data cube.
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Figure 4.23: This figure shows a noisy detector image resulting from the CTIS model sensing
the numbers test hyperspectral data cube.
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Figure 4.24: This figure shows the CTIS detector image of the numbers test hyperspectral data
cube after the spectral data has been attenuated by the atmosphere.
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4.5 Static Fireball Tests

4.5.1 Uniform Fireball Test. This test case simulates a uniform temperature fireball

appearing on a random temperature background scene within the CTIS FOV. The scenario is

based on data collected by AFIT and documented by Dills and Perram in [8]. Three different

temperature fireballs are generated with the main parameters shown in Table 4.2.

Table 4.2: Uniform Fireball Model Parameters

Component Model Parameter Value
Fireball Temperature 1 400oK

Temperature 2 1000oK
Temperature 3 1600oK
Surface Area (sphere) 4000m2

Distance 3258m

Background Mean Temperature 300oK

At the given range, the fire ball diameter extends approximately one tenth of the FOV of the

forward lens in the FOS as shown in Figure 4.29. The background temperature is generated as a

normal random variable with mean 300oK and standard deviation 10oK.
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Figure 4.25: This figure shows a temperature map of the 1600oK fireball located in the center
of a random background scene with a mean temperature of 300oK .
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Each point in the scene is modelled as blackbody with the resulting total number of photons

in each wavelength bin shown in Figure 4.26. This figure also shows the effect of atmospheric

attenuation on the photon sum in each wavelength bin.
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Figure 4.26: This figure shows the number of photons in each wavelength bin of the hyperspectral
data cube for fireballs at 400oK, 1000oK and 1600oK on a 300oK background. The figure also shows
the effects of atmospheric attenuation on the number of photons arriving at the detector.

61



The CTIS detector image and x vector sum for the 400oK, 1000oK and 1600oK fireballs are

shown in Figures 4.27, 4.28 and 4.29 respectively.
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Figure 4.27: This figure shows the CTIS detector image and x vector sum of the 400oK fireball
for both no atmosphere and with atmospheric attenuation.
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Figure 4.28: This figure shows the CTIS detector image and x vector sum of the 1000oK fireball
for both no atmosphere and with atmospheric attenuation.
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Figure 4.29: This figure shows the CTIS detector image and x vector sum of the 1600oK fireball
for both no atmosphere and with atmospheric attenuation.
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4.5.2 Concentric Temperature Rings Fireball Test. This test case simulates a variable

temperature fireball appearing on a random temperature background scene within the CTIS FOV.

The fireball consists of constant temperature concentric rings at 800oK, 1000oK, 1200oK, 1500oK

and 1600oK. The background temperature is a normal random variable with a mean temperature of

300oK and a standard deviation of 10oK. The diameter of the fireball has been enlarged to extended

one half of the FOV as shown is Figure 4.30.
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Figure 4.30: This figure shows the temperature map of a fireball consisting of concentric rings
of constant temperature at 800oK, 1000oK, 1200oK, 1500oK and 1600oK located in the center of a
random background scene with a mean temperature of 300oK.

The photons in four of the wavelength bins resulting from the temperature scene in Figure

4.30 is shown in Figure 4.31. The clean and atmospherically attenuated CTIS detector image and

x vector sum for the concentric rings fireball are shown Figure 4.32.
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Figure 4.31: This figure shows the composition of photons in four wavelength bins resulting from
the concentric rings fireball. The rings of constant temperature are at 800oK, 1000oK, 1200oK,
1500oK and 1600oK on the 300oK random background scene.
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Figure 4.32: This figure shows the CTIS detector image and x vector sum of the concentric rings
fireball for both no atmosphere and with atmospheric attenuation.
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4.5.3 Hot-Spot Fireball Test. This test case simulates a fireball containing several dif-

ferent temperature hot-spots appearing on a random temperature background scene within the

CTIS FOV. The hot-spots in the fireball are at at 1000oK, 1200oK, 1500oK and 1600oK while the

remainder of the fireball is at 600oK as shown in Figure 4.33. The background temperature is a

normal random variable with a mean of 300oK.
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Figure 4.33: This figure shows a temperature map of a 600oK fireball containing hot-spots at a
temperature of 1000oK, 1200oK, 1500oK and 1600oK. The random background scene has a mean
temperature of 300oK.

The photons in four of the wavelength bins resulting from the temperature scene in Figure

4.33 is shown in Figure 4.34. The clean and atmospherically attenuated CTIS detector image and

x vector sum for the hot-spots fireball are shown Figure 4.35.
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Figure 4.34: This figure shows the composition of photons in four wavelength bins resulting
from the hot-spots fireball. The temperature of the hot-spots are at 1000oK, 1200oK, 1500oK and
1600oK while the remainder of the fireball is at 600oK. The random background temperature of
the scene is at a mean temperature of 300oK.
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Figure 4.35: This figure shows the CTIS detector image and x vector sum of the hot-spots fireball
for both no atmosphere and with atmospheric attenuation.
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4.6 Evolving Fireball Test

This test case simulates a temporally evolving, uniform temperature fireball appearing on a

random temperature background scene within the CTIS FOV. This is achieved by combining the

photon flux data of different uniform fireballs in section 4.5.1 so that the photon flux at the DVP

is not constant throughout one complete revolution of the DVP. The four test cases in this section

consist of evolving fireballs with parameters as shown in Table 4.3 where the fireballs with two

Table 4.3: Evolving Fireball Model Parameters

Component Model Parameter Value
Fireball 1 Temperature 1 1600oK

Temperature 2 1500oK
Fireball 2 Temperature 1 1600oK

Temperature 2 1300oK
Fireball 3 Temperature 1 1600oK

Temperature 2 1400oK
Temperature 3 1200oK

Fireball 4 Temperature 1 1600oK
Temperature 2 1000oK
Temperature 3 400oK

All Fireballs Surface Area (sphere) 4000m2

Distance 3258m

Background Mean Temperature 300oK

temperatures transition at DV Pθ = 168o and the fireballs with three temperatures transition at

DV Pθ = 120o and DV Pθ = 240o. The CTIS detector image and x vector sum for the four evolving

fireballs are shown in Figures 4.36, 4.37, 4.38 and 4.39 respectively.
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Figure 4.36: This figure shows the CTIS detector image and x vector sum of the first evolving
fireball. This fireball transitions from 1600oK to 1500oK at DV Pθ = 168o.
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Figure 4.37: This figure shows the CTIS detector image and x vector sum of the second evolving
fireball. This fireball transitions from 1600oK to 1300oK at DV Pθ = 168o.
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Figure 4.38: This figure shows the CTIS detector image and x vector sum of the third evolving
fireball. This fireball transitions from 1600oK to 1400oK at DV Pθ = 120o and 1400oK to 1200oK
at DV Pθ = 240o.
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Figure 4.39: This figure shows the CTIS detector image and x vector sum of the fourth evolving
fireball. This fireball transitions from 1600oK to 1000oK at DV Pθ = 120o and 1000oK to 400oK at
DV Pθ = 240o.
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4.7 Summary of Test Cases

The test case scenarios developed in this chapter are labelled and summarized in Table 4.4.

Table 4.4: Test Case Summary

Test Scenario Section Test Object Size Atmosphere Noise Reconstruction

Binary Star Pair 4.1 1 20× 20 No No 2D
2 20× 20 Yes No 2D + atm
3 20× 20 No No 1D
4 20× 20 Yes No 1D + atm

Spatially Separate 4.2 1 100× 100 No No 2D
Monochromatic 2 100× 100 No Yes 2D
Source 3 100× 100 No No 1D

4 100× 100 No Yes 1D
5 20× 20 No No 1D
6 20× 20 No Yes 1D

Spatially Separate 4.3 1 100× 100 No No 2D
Monochromatic 2 100× 100 No Yes 2D
Source 3 100× 100 No No 1D

4 100× 100 No Yes 1D
5 20× 20 No No 1D
6 20× 20 No Yes 1D

Monochromatic 4.4 1 100× 100 No No 2D
Numbers Source 2 100× 100 Yes No 2D + atm

3 100× 100 No Yes 2D

Uniform Fireball 4.5.1 1 100× 100 No No 1D
400oK, 1000oK, 2 100× 100 Yes No 1D + atm
& 1600oK 3 100× 100 No No 1D

4 100× 100 Yes No 1D + atm
5 100× 100 No No 1D
6 100× 100 Yes No 1D + atm

Concentric 4.5.2 1 100× 100 No No 2D
Temperature 2 100× 100 Yes No 2D + atm
Rings Fireball 3 100× 100 No No 1D

4 100× 100 Yes No 1D + atm

Hot-Spot 4.5.3 1 100× 100 No No 2D
Fireball 2 100× 100 Yes No 2D + atm

3 100× 100 No No 1D
4 100× 100 Yes No 1D + atm

Evolving 4.6 1 100× 100 No No 1D
Fireball 2 100× 100 No No 1D

3 100× 100 No No 1D
4 100× 100 No No 1D
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V. Results and Analysis of Reconstruction Performance

T
his chapter demonstrates the performance of the reconstruction algorithms in section 3.4

in estimating the input hyperspectral data cube for each test case in chapter IV. Recon-

struction is performed on both the 2D detector image and the 1D x vector sum for several of the

test cases. The treatment of atmospheric attenuation and the addition of noisy detector data is

also demonstrated in the test cases. The test case results are presented in the same order as chap-

ter IV and are labelled as indicated in Table 4.4. The chapter concludes with an analysis of the

performance of the 2D and vector reconstruction algorithms.

5.1 Metrics for Reconstruction Performance

The metrics used for evaluating and comparing the reconstruction performance achieved in

the test cases include:

5.1.1 Photon Sum. This metric compares the number of photons in each wavelength for

both the original and reconstructed hyperspectral data cube. The results tables give Photon Sum

for both data cubes in units of photons and also as a percentage with the original data cube taken

as the reference.

5.1.2 Reconstructed Temperature Estimate. The reconstructed photon numbers are also

used to estimate a reconstructed temperature for the test cases consisting of blackbody sources.

This is achieved by fitting the Planckian expression to a spectral sample obtained at one pixel

location, ie, the number of photons in each wavelength bin for one spatial location. This is directly

applicable to the 2D reconstructed data cubes. However the photon numbers from data cubes

resulting from vector reconstructions must be tailored by considering the column sum composition

of the imaged scene. For example the uniform fireballs span one tenth of a linear dimension of the

detector. Thus the number of photons must be scaled depending on the location of the pixel where
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the temperature is required. The scaling ranges from dividing by ten if viewing the fireball center,

to unit scaling if viewing the fireball edge. This also works better where the fireball temperature is

significantly larger than the background temperature. This scenario causes the photons numbers

arriving at the detector from the fireball to be well above the photons arriving from the background.

An estimated temperature is provided in the summary of each of the blackbody test case scenarios.

5.1.3 Reconstruction Error Metric. The Reconstruction Error Metric (REM) is a 1-norm

measure of the spatial error in each wavelength bin calculated by summing the absolute value of

the difference of photons in the reconstructed and original data cube. For 2D reconstructions the

REM is mathematically expressed as

REM(λ) =
N∑

u=1

N∑

v=1

|Ô(λ, u, v) − O(λ, u, v)| (5.1)

where N is the linear spatial dimension of the data cube. Vector reconstructions reduce the REM

to one spatial dimension as

REMu(λ) =
N∑

u=1

|Ô(λ, u) − O(λ, u)| (5.2)

The REM provides a measure of incorrectly located photons in each wavelength bin of the

reconstructed data cube. The absolute value provides the same penalty to both deficient and

excessive numbers of photons at each pixel. The results tables show the REM in units of photons

and as a percentage comparison to the number of photons in the original data cube.

5.1.4 Spectral Bleeding. In several of the monochromatic source test scenarios some of

the wavelength bins in the scene hyperspectral data cube contain zero photons. Non-zero photon

numbers in the corresponding reconstructed bins indicates bleeding, or leakage, of photons during
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the reconstruction. The degree of spectral bleeding is quantified by comparing photons numbers in

the nominally empty reconstructed bins with the photon numbers in the original data cube.

5.2 Binary Star Pair Results

The results for test 4.1.1 are obtained by performing 100 iterations of the 2D reconstruction

algorithm. Four wavelength bins of the reconstructed input hyperspectral data cube, Ô(λ, u, v), are

shown in Figure 5.1. The reconstructed data cube exhibits similar spatial features to the original

data cube in Figure 4.1 with the addition of blurring induced by the CTIS optics.
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Figure 5.1: This figure shows four wavelength bins of the reconstructed input hyperspectral data
cube obtained by performing 100 iterations of the 2D reconstruction algorithm.

The sum of photons in each wavelength bin for each star is shown in Figure 5.2 indicating

that 2D reconstruction algorithm is tracking the total number of photons in each bin of the original

data cube.

Comparisons between the original and reconstructed hyperspectral data cube are also shown

in Table 5.1. Each row contains data for the wavelength bin with a center wavelength indicated by

the first column. The table shows the sum of photons in both the reconstructed and original data
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Figure 5.2: This figure shows the sum of photons in each wavelength bin for each star in the
reconstructed 2D data cube compared with the original data cube.

cubes for each star. The percentage difference of the reconstruction sum compared to the original

sum is also listed. The REM, labelled Error, is shown in units of photons and as a percentage

comparison to the number of photons in the original data cube.

Table 5.1: Binary Star 2D Reconstruction Results

Bin Recon Orig R/O Recon Orig R/O Error Error
λ Star 1 Star 1 % Star 2 Star 2 % Photons %

2.1 2105 2105 100.0 135 136 99.3 369 16.5
2.3 1658 1655 100.2 110 112 98.2 617 34.9
2.5 1327 1324 100.2 89 92 96.7 663 46.8
2.7 1079 1075 100.4 73 77 94.8 697 60.5
2.9 889 885 100.5 61 65 93.8 729 76.7
3.1 742 737 100.7 50 55 90.9 715 90.3
3.3 625 620 100.8 42 47 89.4 708 106.1
3.5 532 527 100.9 35 41 85.4 657 115.7
3.7 457 451 101.3 29 35 82.9 599 123.3
3.9 395 389 101.5 25 31 80.6 542 129.0
4.1 343 338 101.5 22 27 81.5 487 133.4
4.3 301 296 101.7 19 24 79.2 443 138.4
4.5 265 260 101.9 16 21 76.2 402 143.1
4.7 234 230 101.7 15 19 78.9 369 148.2
4.9 208 204 102.0 13 17 76.5 325 147.1
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The results for test 4.1.2 are obtained by performing 100 iterations of the 2D atmospheric

reconstruction algorithm. Four wavelength bins of the reconstructed input hyperspectral data cube,

Ô(λ, u, v), are shown in Figure 5.3. With the inclusion of the atmosphere the reconstructed data

cube still exhibits similar spatial features to the original data cube. Once again additional blurring

is induced by the CTIS optics and is more pronounced at the higher wavelengths.
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Figure 5.3: This figure shows four wavelength bins of the reconstructed input hyperspectral data
cube obtained by performing 100 iterations of the 2D atmospheric reconstruction algorithm.

The sum of photons in each wavelength bin for each star is shown in Figure 5.4 indicating

that 2D atmospheric reconstruction algorithm is also, for the most part, tracking the total number

of photons in each bin of the original data cube. Two bins with a low atmospheric transmission

coefficient, tatm(2.7µm) = 0.0308 and tatm(2.7µm) = 0.0003 , show degraded reconstruction results

which is more evident in the lower photon numbers of Star 2. However the λ = 2.7µm bin, with only

a 3% atmospheric transmission, does reconstruct for Star 1. Also, as indicated by Table 5.2, the

REM is actually slightly lower for each wavelength bin than for the 2D reconstruction conducted

on the pristine data cube shown in Table 5.1.
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Figure 5.4: This figure shows the sum of photons in each wavelength bin for each star in the
reconstructed 2D data cube compared with the original data cube when atmospheric attenuation
is included.

Table 5.2: Binary Star 2D Atmospheric Reconstruction Results

Bin Recon Orig R/O Recon Orig R/O Error Error
λ Star 1 Star 1 % Star 2 Star 2 % Photons %

2.1 2104 2105 100.0 136 136 100.0 366 16.3
2.3 1658 1655 100.2 110 112 98.2 590 33.4
2.5 1325 1324 100.1 90 92 97.8 600 42.4
2.7 1070 1075 99.5 52 77 67.5 854 74.1
2.9 887 885 100.2 62 65 95.4 664 69.9
3.1 741 737 100.5 51 55 92.7 690 87.1
3.3 625 620 100.8 42 47 89.4 697 104.5
3.5 532 527 100.9 36 41 87.8 648 114.1
3.7 456 451 101.1 31 35 88.6 587 120.8
3.9 393 389 101.0 26 31 83.9 531 126.4
4.1 342 338 101.2 24 27 88.9 456 124.9
4.3 0 296 0.0 0 24 0.0 320 100.0
4.5 265 260 101.9 17 21 81.0 378 134.5
4.7 234 230 101.7 15 19 78.9 360 144.6
4.9 208 204 102.0 13 17 76.5 322 145.7
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The results for test 4.1.3 are obtained by performing 1000 iterations of the vector reconstruc-

tion algorithm. The ability to effectively conduct more iterations with the vector reconstruction

algorithm is attributed to its faster processing time over the 2D reconstruction algorithm. As an

indication, the vector algorithm processes each iteration in approximately 0.2sec while the 2D algo-

rithm requires about 48sec per iteration. This equates to the vector algorithm being approximately

240 times faster than the 2D algorithm. The vectors in four wavelength bins of the original and

reconstructed input hyperspectral data cube, Ô(λ, u), are shown in Figure 5.5.
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Figure 5.5: This figure shows the original and reconstructed x vector containing a horizontal
sum of the number of photons in the input hyperspectral data cube. The results are obtained using
the 1000 iterations of the vector reconstruction algorithm.

The sum of photons in each wavelength bin and for each star is shown in Figure 5.6 with the data

also presented in Table 5.3.
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Figure 5.6: This figure shows the sum of photons in each wavelength bin for each star in the
reconstructed 1D data matrix compared with the original data matrix.

Table 5.3: Binary Star Vector Reconstruction Results

Bin Recon Orig R/O Recon Orig R/O Error Error
λ Star 1 Star 1 % Star 2 Star 2 % Photons %

2.1 2105 2105 100.0 137 136 100.7 41 1.8
2.3 1655 1655 100.0 112 112 100.0 75 4.2
2.5 1325 1324 100.1 90 92 97.8 106 7.5
2.7 1077 1075 100.2 75 77 97.4 142 12.3
2.9 888 885 100.3 63 65 96.9 188 19.8
3.1 741 737 100.5 51 55 92.7 257 32.4
3.3 625 620 100.8 42 47 89.4 287 43.0
3.5 533 527 101.1 36 41 87.8 294 51.8
3.7 457 451 101.3 28 35 80.0 314 64.6
3.9 395 389 101.5 25 31 80.6 297 70.7
4.1 344 338 101.8 21 27 77.8 284 77.8
4.3 302 296 102.0 18 24 75.0 272 85.0
4.5 265 260 101.9 16 21 76.2 242 86.1
4.7 234 230 101.7 15 19 78.9 219 88.0
4.9 206 204 101.0 15 17 88.2 117 52.9
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The results for test 4.1.4 are obtained by performing 1000 iterations of the vector atmospheric

reconstruction algorithm. The sum of photons in each wavelength bin and for each star is shown

in Figure 5.7 with the data also presented in Table 5.4. As with the 2D atmospheric case, the

reconstruction is degraded for the bins with low atmospheric transmission coefficients. However

the remaining bins provide a similar reconstruction performance to the 2D atmospheric case.
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Figure 5.7: This figure shows the original and reconstructed x vector containing a horizontal
sum of the number of photons in the input hyperspectral data cube. The results are obtained using
1000 iterations of the vector atmospheric reconstruction algorithm.

Table 5.4: Binary Star Vector Atmospheric Reconstruction Results

Bin Recon Orig R/O Recon Orig R/O Error Error
λ Star 1 Star 1 % Star 2 Star 2 % Photons %

2.1 2104 2105 100.0 137 136 100.5 44 2.0
2.3 1656 1655 100.1 111 112 99.5 97 5.5
2.5 1325 1324 100.1 92 92 99.8 133 9.4
2.7 1041 1075 96.8 1 77 1.3 411 35.7
2.9 888 885 100.3 65 65 100.3 152 16.0
3.1 740 737 100.4 52 55 94.5 212 26.8
3.3 625 620 100.8 43 47 91.3 272 40.8
3.5 532 527 101.0 37 41 91.1 264 46.5
3.7 456 451 101.1 31 35 87.9 277 57.0
3.9 393 389 101.0 26 31 84.4 247 58.8
4.1 339 338 100.3 25 27 92.5 158 43.3
4.3 827 296 279.8 0 24 0.0 1145 358.5
4.5 263 260 101.2 17 21 80.3 185 65.8
4.7 234 230 101.9 16 19 84.9 202 81.3
4.9 206 204 101.0 14 17 83.0 114 51.6
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A summary of the results for the binary star test cases 4.1.1 to 4.1.4 is presented in Table 5.5.

The results indicate no degradation in reconstruction performance when the vector algorithm is used

over the 2D reconstruction algorithm. The results for the atmospheric reconstruction algorithm on

atmospherically attenuated detector data also maintain accuracy when compared to the pristine

detector data. The table indicates the atmospheric reconstruction results when the low atmospheric

transmission coefficient bins are not considered. The corresponding values for these bins are also

shown.

Table 5.5: Binary Star Results Summary

Photon Sum Error % REM
Test Case Star 1 Star 2 %

2D 0.0 - 2.0 0.7 - 23.5 16.5 - 148.2
2D + atm + mask 0.0 - 2.0 0.0 - 23.5 16.3 - 145.7

2D + atm: bad bins 100, 0.5 32.5, 100 69.9, 100
1D 0.0 - 2.0 0.0 - 25.0 1.8 - 88.0

1D + atm + mask 0.0 - 1.9 0.3 - 19.7 2.0 - 81.3
1D + atm: bad bins 3.2, 179.8 98.7, 100.0 35.7, 358.5

The temperatures of each star are also estimated from the reconstructed photon data for

each test case as shown in Table 5.6. The table shows the estimate obtained by considering only

the spectral data at the peak pixel spatial location for each star. Due to the blurring induced

by the modelled optics this temperature can be significantly lower than the respective original

star temperature. Improvement in the estimation is achieved by summing the received photons

for each star prior to performing the temperature estimation. The validity of using this form of

post-processing is applicable to the binary star scenario but also assumes some prior knowledge

of the distribution of photons arriving from the individual stars. The table also shows the tem-

perature estimation improvement when removing, or masking out, the bins with low atmospheric

transmission coefficients.
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Table 5.6: Binary Star Reconstructed Temperatures

Reconstructed Star 1 Temp. Reconstructed Star 2 Temp.
(Original at 10000oK) (Original at 5000oK)

Peak Summed Peak Summed
Test Case pixel Error pixel Error pixel Error pixel Error

oK % oK % oK % oK %

2D 8324 -16.8 10022 0.2 3948 -21.0 4873 -2.5
2D + atm 8322 -16.8 9964 -0.4 3953 -20.9 4804 -3.9

2D + atm + mask 8473 -15.3 10015 0.2 4095 -18.1 4909 -1.8
1D 9590 -4.1 10015 0.2 4527 -9.5 4920 -1.6

1D + atm 9499 -5.0 10070 0.7 4369 -12.6 4666 -6.7
1D + atm + mask 9624 -3.8 10010 0.1 4942 -1.2 4959 -0.8

5.3 Spatially Separate Monochromatic Source Results

The results for tests 4.2.1 and 4.2.2 are obtained by separately performing 100 iterations of

the 2D reconstruction algorithm for each test case. The clean image at the detector is used in test

4.2.1 to reconstruct the input data cube with the results shown in Figure 5.8.

Test 4.2.2 adds noise to the detector image prior to performing the reconstruction. Though the

reconstructed data is degraded as shown in Figure 5.9, the shape of the original source bars is still

apparent. The degradation of the reconstruction is quantified in Figure 5.10 which shows the sum

of photons in each wavelength bin for the original, noiseless reconstructed and noisy reconstructed

data.

This effect of detector noise on the 2D reconstruction is also presented in Table 5.7 which

shows the sum of photons in each reconstructed bin for both the clean and noisy detector data.

This is also displayed as a percentage compared to the number of photons in the bins of the original

data cube. The REM is also shown in units of photons and as a percentage for the bins containing

sources. It is observed that the REM is significantly lower for the extended sources in these test

cases compared to the point sources in the binary star test case results in section 5.2.
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Figure 5.8: This figure shows the reproduction of the original bar test data cube by the 2D
reconstruction algorithm. The bar test consists of five monochromatic sources in five spectral
bins. The original sources have a uniform five photons across their extent with the remaining bins
containing zero photons. The final subplot shows a total 2 − 5µm view of the reproduced data.

Table 5.7: Spatially Separated Monochromatic Source 2D Reconstruction Results for Clean and
Noisy Data

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bar Bar Bar N % % N Photons Photons N % % N

2.1 6000 5932 5867 98.9 97.8 378 1438 6.3 24.0
2.3 0 69 118 0 49
2.5 0 101 129 0 50
2.7 6000 5794 5738 96.6 95.6 754 1292 12.6 21.5
2.9 0 106 132 0 50
3.1 0 0 0 0 0
3.3 0 31 36 0 9
3.5 3000 2944 2938 98.1 97.9 453 695 15.1 23.2
3.7 0 24 38 0 10
3.9 0 0 0 0 0
4.1 0 23 38 0 6
4.3 4000 3956 3942 98.9 98.6 541 763 13.5 19.1
4.5 0 18 18 0 0
4.7 0 1 2 0 0
4.9 3000 3001 2989 100.0 99.6 583 719 19.4 24.0
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Figure 5.9: This figure shows the degraded performance of the 2D reconstruction algorithm
in the presence of noisy detector data. The spatial features of the original data remain in the
reconstruction of the noisy data.
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Figure 5.10: This figure shows the sum of photons in each wavelength bin for the bar test in
the reconstructed 2D data cube compared with the original data cube. The sum of photons for the
reconstruction of noisy detector data is also shown.
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The results for tests 4.2.3 and 4.2.4 are obtained by separately performing 1000 iterations of

the vector reconstruction algorithm for each test case. The clean image at the detector is used in

test 4.2.3 while a noisy detector image is used in test 4.2.4. The sources in the reconstructed input

data cube for both test cases are shown in Figure 5.11.
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Figure 5.11: This figure shows the reproduction of the original bar test data cube by the 1D
reconstruction algorithm. The reconstruction of x vector sum degrades with the addition of noise
to the detector image, though the general spatial features are still apparent.

The photon sums in each bin are shown in Figure 5.12. The difference in performance between

the 2D and vector reconstruction algorithms is also observed by comparing Tables 5.8 and 5.7.
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Figure 5.12: This figure shows the sum of photons in each wavelength bin for the bar test in the
reconstructed data compared with the original data cube. The sum of photons for the reconstruction
of noisy detector data is also shown. The breakdown of the reconstruction is evident in the higher
wavelength bins and increased photon numbers in the originally empty bins.

Table 5.8: Spatially Separated Monochromatic Source Vector Reconstruction Results for Clean
and Noisy Data

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bar Bar Bar N % % N Photons Photons N % % N

2.1 6000 5998 5962 100.0 99.4 352 503 5.9 8.4
2.3 0 16 38 17 36
2.5 0 52 54 52 55
2.7 6000 5921 5880 98.7 98.0 559 645 9.3 10.8
2.9 0 15 31 15 33
3.1 0 9 53 7 53
3.3 0 354 342 353 339
3.5 3000 2196 2068 73.2 68.9 877 1067 29.2 35.6
3.7 0 326 396 322 394
3.9 0 185 258 185 257
4.1 0 434 487 435 485
4.3 4000 3036 2917 75.9 72.9 1170 1406 29.3 35.2
4.5 0 456 501 455 502
4.7 0 113 113 111 112
4.9 3000 2890 2893 96.3 96.4 208 426 6.9 14.2
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The results for tests 4.2.5 and 4.2.6 are obtained by separately performing 1000 iterations of

the vector reconstruction algorithm for each test case. The major distinction between this and the

previous test case is that the smaller spatial extent (20 × 20 pixels) of each wavelength source in

the input data is completely spatially dispersed at the detector. The clean image at the detector is

used in test 4.2.5 while a noisy detector image is used in test 4.2.6. The sources in the reconstructed

input data cube for both test cases are shown in Figure 5.13.
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Figure 5.13: This figure shows the reproduction of the original small bar test data cube by the
1D reconstruction algorithm. The reconstruction of x vector sum suffers more degradation than
the previous test case with the addition of noise to the detector image.
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The photon sums in each bin are shown in Figure 5.14 indicate improved performance over

the previous test case. However the remaining reconstruction results in Table 5.9, the reconstruc-

tion results show mixed REM results in comparison to Table 5.8, but generally confirm a high

susceptibility to noise with the smaller input data cube.
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Figure 5.14: This figure shows the sum of photons in each wavelength bin for the smaller bar
test in the reconstructed data compared with the original data cube. The sum of photons for the
reconstruction of noisy detector data is also shown. The smaller input data cube leads to improved
reconstruction performance in terms of reproducing the number of photons in the original scene.

Table 5.9: Spatially Separated Monochromatic Source Vector Reconstruction Results For Clean
And Noisy Data Using Small Input Data Cube

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bar Bar Bar N % % N Photons Photons N % % N

2.1 240 240 244 100.0 101.7 20 43 8.3 17.9
2.3 0 0 2 0 1
2.5 0 0 0 0 0
2.7 240 240 240 100.0 100.0 58 82 24.2 34.2
2.9 0 0 0 0 0
3.1 0 0 0 0 0
3.3 0 0 0 0 0
3.5 120 120 116 100.0 96.7 20 82 16.7 68.3
3.7 0 0 0 0 0
3.9 0 0 0 0 0
4.1 0 0 0 0 0
4.3 160 160 156 100.0 97.5 14 46 8.8 28.8
4.5 0 0 0 0 0
4.7 0 0 0 0 0
4.9 120 120 118 100.0 98.3 12 71 10.0 59.2
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A summary of the results for the spatially separated monochromatic source test cases 4.2.1

to 4.2.6 is presented in Table 5.10. The table indicates little degradation in 2D and vector re-

construction performance with the addition of noise to the detector image. However a significant

performance degradation is demonstrated for the vector reconstruction algorithm over each recon-

struction metric. This is attributed to the increased spatial information in the scene not being fully

reproduced in the corresponding vector representation. Performance improves with the smaller

imaged scene, however this scene is also more susceptible to noise.

Table 5.10: Spatially Separated Monochromatic Source Results Summary

Photon Sum Error REM Spectral Bleeding
Test Case % % %

2D 0.0 - 3.4 6.3 - 19.4 0.0 - 1.8
2D + noise 0.4 - 4.4 19.1 - 24.0 0.0 - 2.2

1D (100 × 100) 0.0 - 26.8 5.9 - 29.3 0.3 - 11.8
1D + noise 0.6 - 31.1 8.4 - 35.6 0.5 - 13.2

1D (20 × 20) 0.0 8.3 - 24.2 0.0
1D + noise 0.0 - 3.3 17.9 - 68.3 0.0 - 0.8
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5.4 Spatially Overlapping Monochromatic Source Results

The results for tests 4.3.1 and 4.3.2 are obtained by separately performing 100 iterations of

the 2D reconstruction algorithm for each test case. The clean image at the detector is used in test

4.3.1 to reconstruct the input data cube with the results shown in Figure 5.15.
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Figure 5.15: This figure shows the reproduction of the original overlapping bar test data cube
by the 2D reconstruction algorithm. The bar test consists of four monochromatic sources in four
spectral bins. The original sources have a uniform five photons across their extent with the remain-
ing bins containing zero photons. The final subplot shows a total 2 − 5µm view of the reproduced
data.

Test 4.3.2 adds noise to the detector image prior to performing the reconstruction. Though

the reconstructed data is degraded as shown in Figure 5.16, the shape of the original source bars is

still evident. The degradation of the reconstruction is also shown in Figure 5.17 which shows the

sum of photons in each wavelength bin for the original, reconstructed and noisy reconstructed data

and Table 5.11 which shows the REM.
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Figure 5.16: This figure shows the degraded performance of the 2D reconstruction algorithm in
the presence of noisy detector data for the overlapping bar test. However the spatial features of
the original data do remain in the reconstruction of the noisy data.
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Figure 5.17: This figure shows the sum of photons in each wavelength bin for the overlapping
bar test in the reconstructed 2D data cube compared with the original data cube. The sum of
photons for the reconstruction of noisy detector data is also shown.
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This test demonstrates the ability of the 2D reconstruction algorithm to spectrally separately

spatially overlapping sources.

Table 5.11: Spatially Overlapping Monochromatic Source 2D Reconstruction Results for Clean
and Noisy Data

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bar Bar Bar N % % N Photons Photons N % % N

2.1 10000 9677 9580 96.8 95.8 419 2360 4.2 23.6
2.3 0 318 416 0 240
2.5 0 10 34 0 3
2.7 0 703 768 782 698
2.9 10000 8651 8579 86.5 85.8 1865 2522 18.7 25.2
3.1 0 642 628 668 516
3.3 0 7 13 0 0
3.5 0 2 8 0 0
3.7 0 444 492 205 353
3.9 10000 9228 9144 92.3 91.4 1489 1927 14.9 19.3
4.1 0 321 360 42 189
4.3 0 0 0 0 0
4.5 0 0 0 0 0
4.7 0 25 35 0 0
4.9 10000 9970 9960 99.7 99.6 1029 1662 10.3 16.6
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The results for tests 4.3.3 and 4.3.4 are obtained by separately performing 1000 iterations of

the vector reconstruction algorithm for each test case. The clean image at the detector is used in

test 4.3.3 while a noisy detector image is used in test 4.3.4. The sources in the reconstructed input

data cube for both test cases are shown in Figure 5.18.

20 40 60 80 100
0

100

200

300

400

500

Original Vector @ λ = 2.1 µm

# P
ho

ton
s

80 100 120 140 160
0

100

200

300

400

500

Reconstructed Clean @ λ = 2.1 µm

# P
ho

ton
s

80 100 120 140 160
0

100

200

300

400

500

Reconstructed Noisy @ λ = 2.1 µm

# P
ho

ton
s

20 40 60 80 100
0

100

200

300

400

500

Original Vector @ λ = 2.9 µm

# P
ho

ton
s

80 100 120 140 160
0

100

200

300

400

500

Reconstructed Clean @ λ = 2.9 µm

# P
ho

ton
s

80 100 120 140 160
0

100

200

300

400

500

Reconstructed Noisy @ λ = 2.9 µm

# P
ho

ton
s

20 40 60 80 100
0

50

100

150

200

250

Original Vector @ λ = 3.9 µm

# P
ho

ton
s

80 100 120 140 160
0

50

100

150

200

250

Reconstructed Clean @ λ = 3.9 µm

# P
ho

ton
s

80 100 120 140 160
0

50

100

150

200

250

Reconstructed Noisy @ λ = 3.9 µm

# P
ho

ton
s

20 40 60 80 100
0

50

100

150

200

250

Original Vector @ λ = 4.9 µm

# P
ho

ton
s

80 100 120 140 160
0

50

100

150

200

250

Reconstructed Clean @ λ = 4.9 µm

# P
ho

ton
s

80 100 120 140 160
0

50

100

150

200

250

Reconstructed Noisy @ λ = 4.9 µm

# P
ho

ton
s

Figure 5.18: This figure shows the reproduction of the original overlapping bar test data cube
by the 1D reconstruction algorithm. Again the reconstruction of x vector sum degrades with the
addition of noise to the detector image.

The photon sums in each bin are shown in Figure 5.19. The difference in performance between

the 2D and vector reconstruction algorithms is also observed by comparing Tables 5.12 and 5.11.
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Figure 5.19: This figure shows the sum of photons in each wavelength bin for the overlapping
bar test in the reconstructed data compared with the original data cube. The sum of photons for
the reconstruction of noisy detector data is also shown. The breakdown of the reconstruction is
evident in the higher wavelength bins and increased photon numbers in the originally empty bins.

Table 5.12: Spatially Overlapping Monochromatic Source Vector Reconstruction Results for
Clean and Noisy Data

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bar Bar Bar N % % N Photons Photons N % % N

2.1 10000 9870 9859 98.7 98.6 420 1072 4.2 10.7
2.3 0 138 143 136 141
2.5 0 13 54 10 54
2.7 0 232 255 230 255
2.9 10000 9573 9576 95.7 95.8 883 1224 8.8 12.2
3.1 0 241 225 241 224
3.3 0 35 39 34 37
3.5 0 232 315 233 314
3.7 0 2009 1861 2007 1861
3.9 10000 5335 5350 53.4 53.5 4820 5134 48.2 51.3
4.1 0 1713 1664 1713 1659
4.3 0 492 522 495 524
4.5 0 249 318 248 316
4.7 0 524 575 525 574
4.9 10000 9345 9258 93.5 92.6 789 1389 7.9 13.9
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The results for tests 4.3.5 and 4.3.6 are obtained by separately performing 1000 iterations of

the vector reconstruction algorithm for each test case. Again the distinction between this and the

previous test case is the smaller spatial extent (20 × 20 pixels) of each wavelength source and the

complete spatial dispersion of the sources at the detector. The clean image at the detector is used

in test 4.3.5 while a noisy detector image is used in test 4.3.6. The sources in the reconstructed

input data cube for both test cases are shown in Figure 5.20.
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Figure 5.20: This figure shows the reproduction of the original small bar test data cube by the
1D reconstruction algorithm. The reconstruction of x vector sum suffers more degradation than
the previous test case with the addition of noise to the detector image.

The photon sums in each bin are shown in Figure 5.21 indicate improved performance over

the previous test case. However the remaining reconstruction results in Table 5.13, the reconstruc-

tion results show mixed REM results in comparison to Table 5.12, but generally confirm a high

susceptibility to noise with the smaller input data cube.
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Figure 5.21: This figure shows the sum of photons in each wavelength bin for the smaller
overlapping bar test in the reconstructed data compared with the original data cube. The sum
of photons for the reconstruction of noisy detector data is also shown. The smaller input data cube
leads to improved reconstruction performance in terms of reproducing the number of photons in
the original scene.

Table 5.13: Spatially Overlapping Monochromatic Source Vector Reconstruction Results For
Clean And Noisy Data Using Small Input Data Cube

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bar Bar Bar N % % N Photons Photons N % % N

2.1 400 400 397 100.0 99.3 53 131 13.3 32.8
2.3 0 0 0 0 0
2.5 0 0 1 0 0
2.7 0 0 0 0 0
2.9 400 400 402 100.0 100.5 57 58 14.3 14.5
3.1 0 0 0 0 0
3.3 0 0 0 0 0
3.5 0 0 0 0 0
3.7 0 0 0 0 0
3.9 400 400 398 100.0 99.5 20 152 5.0 38.0
4.1 0 0 0 0 0
4.3 0 0 0 0 0
4.5 0 0 0 0 0
4.7 0 0 0 0 0
4.9 400 400 402 100.0 100.5 20 137 5.0 34.3
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A summary of the results for the spatially overlapping monochromatic source test cases 4.3.1

to 4.3.6 is presented in Table 5.14. The table again indicates little degradation in 2D and vector

reconstruction performance with the addition of noise to the detector image. It is observed that

Photon Sum Error and Spectral Bleeding have slightly increased in comparison to the spatially

separated monochromatic source test cases. The results from the vector reconstruction again show

significant performance degradation compared to the 2D reconstruction results. Performance again

improves with the smaller imaged scene, but with increased noise susceptibility.

Table 5.14: Spatially Overlapping Monochromatic Source Results Summary

Photon Sum Error REM Spectral Bleeding
Test Case % % %

2D 0.3 - 13.5 4.2 - 18.7 0.0 - 6.3
2D + noise 0.4 - 18.7 16.6 - 25.2 0.0 - 6.4

1D (100 × 100) 1.3 - 46.6 4.2 - 48.2 0.1 - 20.1
1D + noise 1.4 - 46.5 10.7 - 51.3 0.5 - 18.6

1D (20 × 20) 0.0 5.0 - 14.3 0.0
1D + noise 0.5 - 0.7 14.5 - 38.0 0.0 - 0.3
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5.5 Monochromatic Numbers Source Results

The results for test 4.4.1 are obtained by performing 100 iterations of the 2D reconstruction

algorithm. Generated from a clean detector image, each wavelength bin of the reconstructed input

data cube is shown in Figure 5.22. The reconstructed data cube exhibits similar spatial features to

the original data cube in Figure 4.21 with some spectral overlap evident in adjacent bins.
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Figure 5.22: This figure shows the reconstruction of the noiseless numbers test data cube by the
2D reconstruction algorithm. The original monochromatic sources have a uniform hundred photons
across their extent.
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Test 4.4.2 uses a noisy detector image and reconstructs the input data cube using 100 itera-

tions of the 2D reconstruction algorithm. The 2D reconstruction in the presence of noise is highly

comparable to the noiseless reconstruction as shown in Figure 5.23 and indicated in Tables 5.15

and 5.16.
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Figure 5.23: This figure shows the reconstruction of the noisy numbers test data cube by the 2D
reconstruction algorithm. The reconstruction using noisy data is highly comparable to the previous
test case which contained no noise.
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Test 4.4.3 uses a detector image which has been attenuated by the atmosphere. The recon-

struction is conducted using 100 iterations of the 2D atmospheric reconstruction algorithm. The

2D reconstruction of the attenuated data is highly comparable to the noiseless reconstruction as

shown in Figure 5.24 and indicated in Tables 5.15 and 5.16. The exceptions are the λ = 2.7µm and

λ = 4.3µm bins which fail to reconstruct the source shape due to the low tatm(λ) of the bins.
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Figure 5.24: This figure shows the reconstruction of the atmospherically attenuated numbers
test data cube by the 2D atmospheric reconstruction algorithm. This reconstruction is highly
comparable to the noiseless test case with the exception of the λ = 2.7µm and λ = 4.3µm bins.
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The photon sums in each bin are shown in Figure 5.25 for the numbers test using noiseless,

noisy and atmospherically attenuated number test data. The bin photon sums are comparable for

the noiseless and noisy data. Most of the bin photon sums of the attenuated data also track the

original data.
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Figure 5.25: This figure shows the sum of photons in each wavelength bin for the numbers test
in the reconstructed 2D data cube compared with the original data cube. The sum of photons
for the reconstruction of noisy detector data and atmospherically attenuated detector data is also
shown. All reconstructed bin photon sums track the original input data.

Further reconstruction performance results the numbers tests in are shown in Tables 5.15 and

5.16. These tables indicate the strong performance of the 2D atmospheric reconstruction algorithm

in the bins where the applicable tatm(λ) is sufficient to allow some photons to arrive at the detector.

Spatial reconstruction of the source shapes degrades with a very low tatm(λ), but the bin photon

sum is still recovered as indicated by final column in Table 5.15.
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Table 5.15: Number Monochromatic Source 2D Reconstruction Photon Sum Results For Clean,
Noisy And Atmospherically Attenuated Data

Bin Orig Recon Recon Recon R/O R/O R/O
λ Number Number Number N Number A % % N % A

2.1 245000 239478 240065 240533 97.7 98.0 98.2
2.3 256100 257599 257470 247412 100.6 100.5 96.6
2.5 248500 254051 253153 280336 102.2 101.9 112.8
2.7 246400 259143 259494 334045 105.2 105.3 135.6
2.9 288700 258432 258104 271814 89.5 89.4 94.2
3.1 248600 256577 256379 245967 103.2 103.1 98.9
3.3 211100 228945 228675 220955 108.5 108.3 104.7
3.5 261800 252339 252601 254575 96.4 96.5 97.2
3.7 183700 190862 190705 189807 103.9 103.8 103.3
3.9 280000 255358 255450 270461 91.2 91.2 96.6
4.1 254700 282907 283489 271018 111.1 111.3 106.4
4.3 366000 357764 357890 361925 97.7 97.8 98.9
4.5 346500 351325 351307 337370 101.4 101.4 97.4
4.7 276900 264331 264104 277887 95.5 95.4 100.4
4.9 343000 347891 347866 344364 101.4 101.4 100.4

Table 5.16: Number Monochromatic Source 2D Reconstruction REM Results For Clean, Noisy
And Atmospherically Attenuated Data

Bin Error Error Error Error Error Error
λ Number Number N Number A % % N % A

2.1 52499 55270 46205 21.4 22.6 18.9
2.3 82404 84248 70791 32.2 32.9 27.6
2.5 104625 105826 83876 42.1 42.6 33.8
2.7 132353 132507 345454 53.7 53.8 140.2
2.9 110465 111602 84653 38.3 38.7 29.3
3.1 97272 97859 83297 39.1 39.4 33.5
3.3 116760 116899 114047 55.3 55.4 54.0
3.5 113791 114129 104676 43.5 43.6 40.0
3.7 94462 94164 83872 51.4 51.3 45.7
3.9 120647 120390 107284 43.1 43.0 38.3
4.1 107606 107475 100975 42.2 42.2 39.6
4.3 107406 108163 463569 29.3 29.6 126.7
4.5 103747 103957 114087 29.9 30.0 32.9
4.7 95954 96517 84341 34.7 34.9 30.5
4.9 86413 87747 81648 25.2 25.6 23.8
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A summary of the results for the monochromatic numbers test cases 4.4.1 to 4.4.3 is presented

in Table 5.17. The table again indicates little performance degradation of the 2D algorithm with

the addition of noise to the detector image. Atmospherically attenuated detector data is also

successfully used to reconstruct the input hyperspectral data cube for the wavelength bins where

tatm(λ) > 0.03. The table indicates reconstruction failure in the reconstruction metrics for the

λ = 2.7µm and λ = 4.3µm bins where tatm(λ) < 0.03. Spectral bleeding is also observed in each of

the numbers test cases in the form of shadowing of numbers in adjacent bins.

Table 5.17: Number Monochromatic Source Results Summary

Photon Sum Error REM
Test Case % %

2D 0.6 - 11.1 21.4 - 55.3
2D + noise 0.5 - 11.3 22.6 - 55.4
2D + atm 1.1 - 12.8 18.9 - 54.0

2D + atm: bad bins 35.6, 6.4 140.2, 126.7

103



5.6 Static Fireball Results

5.6.1 Uniform Fireball Results. The results for test 4.5.1.1 are obtained by performing

1000 iterations of the vector reconstruction algorithm using a noiseless detector image of the 400oK

fireball. The results for test 4.5.1.2 are obtained by performing 1000 iterations of the vector at-

mospheric reconstruction algorithm with a detector image that is atmospherically attenuated. The

original and reconstructed input data cubes for both test cases are shown in Figure 5.26.
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Figure 5.26: This figure shows the reproduction of the original 400oK fireball data cube by
the vector reconstruction algorithm. The reconstruction of atmospherically attenuated input data
is also shown with reconstruction failure in the λ = 2.1µm and λ = 4.3µm bins for the direct
atmospheric inverse algorithm. The atmospheric reconstruction is more successful, as shown in the
right column, when the atmospheric attenuation data is included within the algorithm.
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The vector atmospheric reconstruction algorithm for this test case separately computes re-

sults for both the direct atmospheric inverse and the inclusion of the atmospheric data within the

estimation algorithm as discussed in section 3.4.3.

The photon sums in each bin are shown in Figure 5.27 demonstrate good tracking of the vector

reconstruction algorithm on clean input data. However the error increases with the atmospherically

attenuated data and the sum greatly increases in the low valued tatm(λ) bins. This is consistent

in both vector atmospheric reconstruction algorithms but is more pronounced using the direct

atmospheric inverse method. Hence the inclusion of the atmospheric data within the estimation

algorithm is regarded as the superior method for reconstructing atmospherically attenuated data.
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Figure 5.27: This figure shows the sum of photons in each wavelength bin for the 400oK fireball
in the reconstructed data compared with the original data cube. The sum of photons for the re-
construction of atmospherically attenuated detector data is also shown for both vector atmospheric
reconstruction methods.

The remaining reconstruction results are shown in Tables 5.18 and 5.19. This data shows

REM decreasing as the bin wavelength increases. This trend is attributed to Planckian nature of

the 400oK blackbody where emitted photon numbers greatly increase between 3 − 5µm.
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Table 5.18: Uniform Fireball at 400oK Vector Reconstruction Photon Sum Results For Clean
And Atmospherically Attenuated Data

Bin Orig Recon Recon Recon R/O R/O R/O
λ Number Number Number AINV Number AEST % % AINV % AEST

2.1 7.6E+10 1.2E+11 2.7E+10 1.4E+11 157.1 35.2 182.0
2.3 2.7E+11 3.6E+11 9.8E+10 3.9E+11 132.0 35.9 142.0
2.5 8.2E+11 8.4E+11 3.7E+11 8.7E+11 102.4 44.8 106.0
2.7 2.1E+12 2.2E+12 2.3E+13 2.0E+12 104.1 1087.7 96.0
2.9 4.7E+12 4.7E+12 4.7E+12 4.8E+12 99.3 98.2 102.0
3.1 9.6E+12 9.5E+12 1.0E+13 9.4E+12 98.5 108.4 98.0
3.3 1.8E+13 1.8E+13 2.4E+13 1.8E+13 101.2 136.4 101.0
3.5 3.1E+13 3.0E+13 3.1E+13 3.0E+13 97.0 101.9 97.2
3.7 4.9E+13 5.0E+13 4.5E+13 5.0E+13 100.5 90.2 101.0
3.9 7.5E+13 7.5E+13 5.8E+13 7.6E+13 100.0 76.6 101.0
4.1 1.1E+14 1.1E+14 8.8E+13 1.1E+14 99.9 80.8 101.0
4.3 1.5E+14 1.5E+14 1.8E+17 1.5E+14 100.9 119900.9 98.7
4.5 2.0E+14 2.0E+14 2.4E+14 2.0E+14 99.6 117.7 99.8
4.7 2.7E+14 2.7E+14 2.0E+14 2.7E+14 100.0 74.9 100.0
4.9 3.4E+14 3.4E+14 3.7E+14 3.4E+14 100.0 108.8 100.0

Table 5.19: Uniform Fireball at 400oK Vector Reconstruction REM Results For Clean And
Atmospherically Attenuated Data

Bin Error Error Error Error Error Error
λ Number Number AINV Number AEST % % AINV % AEST

2.1 7.8E+10 6.8E+10 7.5E+10 102.8 89.8 99.9
2.3 1.3E+11 1.9E+11 1.2E+11 46.9 67.8 44.8
2.5 1.9E+11 4.6E+11 2.1E+11 23.8 56.1 25.9
2.7 2.7E+11 2.1E+13 6.6E+11 12.7 985.9 31.3
2.9 4.9E+11 1.3E+12 5.3E+11 10.4 27.9 11.2
3.1 8.7E+11 1.4E+12 9.3E+11 9.0 14.9 9.6
3.3 1.4E+12 6.8E+12 1.4E+12 7.6 38.1 7.9
3.5 2.3E+12 3.1E+12 2.2E+12 7.5 10.2 7.3
3.7 3.1E+12 6.3E+12 3.3E+12 6.4 12.8 6.7
3.9 4.7E+12 1.8E+13 4.8E+12 6.3 24.5 6.4
4.1 6.3E+12 2.2E+13 6.5E+12 5.8 19.9 5.9
4.3 8.5E+12 1.8E+17 2.3E+13 5.6 118648.8 15.4
4.5 1.1E+13 4.1E+13 1.2E+13 5.6 20.2 5.7
4.7 1.4E+13 7.0E+13 1.4E+13 5.4 26.3 5.3
4.9 1.5E+13 3.4E+13 1.5E+13 4.4 10.0 4.4
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The results for test 4.5.1.3 are obtained by performing 1000 iterations of the vector recon-

struction algorithm using a noiseless detector image of the 1000oK fireball. The results for test

4.5.1.4 are obtained by performing 1000 iterations of the vector atmospheric reconstruction algo-

rithm with a detector image that is atmospherically attenuated. The original and reconstructed

input data cubes for both test cases are shown in Figure 5.28.
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Figure 5.28: This figure shows the reproduction of the original 1000oK fireball data cube by the
vector reconstruction algorithm. The reconstruction of atmospherically attenuated input data is
also shown with reconstruction failure in the λ = 4.3µm bin more severe in the direct atmospheric
inverse method.
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The photon sums in each bin are shown in Figure 5.29 demonstrate good tracking of the

vector reconstruction algorithm on clean input data. However, as with the previous test case, the

error increases with the atmospherically attenuated data and the sum greatly increases in the low

valued tatm(λ) bins. Again the direct atmospheric inverse algorithm performs more poorly than

the inclusion of atmospheric data within the estimation algorithm.
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Figure 5.29: This figure shows the sum of photons in each wavelength bin for the 1000oK fireball
in the reconstructed data compared with the original data cube. The sum of photons for the
reconstruction of atmospherically attenuated detector data is also shown for both atmospheric
reconstruction methods.

The remaining reconstruction results are shown in Tables 5.20 and 5.21. The data indicates

little drop-off in reconstruction performance when the atmospheric attenuation is included. The

exception is again the low valued tatm(λ) bins at λ = 2.7µm and λ = 4.3µm, which is more severe

for the direct atmospheric inversion method.
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Table 5.20: Uniform Fireball at 1000oK Vector Reconstruction Photon Sum Results For Clean
And Atmospherically Attenuated Data

Bin Orig Recon Recon Recon R/O R/O R/O
λ Number Number Number AINV Number AEST % % AINV % AEST

2.1 1.4E+15 1.3E+15 1.3E+15 1.3E+15 99.8 99.4 99.7
2.3 1.7E+15 1.7E+15 1.7E+15 1.7E+15 99.8 101.4 100.1
2.5 2.0E+15 2.0E+15 1.9E+15 2.0E+15 100.1 96.3 100.5
2.7 2.3E+15 2.3E+15 4.4E+15 2.0E+15 100.4 194.2 89.2
2.9 2.5E+15 2.5E+15 2.4E+15 2.5E+15 99.9 96.8 100.5
3.1 2.6E+15 2.6E+15 2.7E+15 2.6E+15 100.1 101.5 100.0
3.3 2.7E+15 2.7E+15 2.7E+15 2.7E+15 100.0 99.4 100.0
3.5 2.8E+15 2.8E+15 2.8E+15 2.8E+15 100.0 100.0 100.1
3.7 2.8E+15 2.8E+15 2.8E+15 2.8E+15 100.0 99.3 99.8
3.9 2.8E+15 2.8E+15 2.8E+15 2.8E+15 99.8 99.1 99.8
4.1 2.8E+15 2.8E+15 2.8E+15 2.8E+15 99.8 98.1 100.0
4.3 2.8E+15 2.8E+15 3.7E+17 8.2E+14 99.9 13424.9 29.6
4.5 2.8E+15 2.8E+15 2.8E+15 2.8E+15 100.4 101.6 100.9
4.7 2.7E+15 2.8E+15 2.7E+15 2.8E+15 100.3 97.0 100.2
4.9 2.7E+15 2.7E+15 2.8E+15 2.7E+15 99.7 101.0 99.7

Table 5.21: Uniform Fireball at 1000oK Vector Reconstruction REM Results For Clean And
Atmospherically Attenuated Data

Bin Error Error Error Error Error Error
λ Number Number AINV Number AEST % % AINV % AEST

2.1 5.5E+13 5.6E+13 5.7E+13 4.1 4.1 4.2
2.3 9.6E+13 9.3E+13 9.4E+13 5.6 5.4 5.5
2.5 1.7E+14 1.2E+14 1.7E+14 8.3 5.8 8.3
2.7 2.7E+14 2.1E+15 4.9E+14 11.9 94.2 21.4
2.9 3.4E+14 3.2E+14 3.4E+14 13.7 13.1 13.7
3.1 4.0E+14 4.0E+14 3.8E+14 15.3 15.4 14.4
3.3 4.3E+14 4.3E+14 4.1E+14 15.7 15.8 15.0
3.5 4.3E+14 4.3E+14 4.1E+14 15.3 15.4 14.8
3.7 4.3E+14 4.4E+14 4.2E+14 15.3 15.8 14.8
3.9 4.2E+14 4.4E+14 4.3E+14 14.9 15.6 15.1
4.1 4.0E+14 4.1E+14 4.1E+14 14.3 14.5 14.7
4.3 3.9E+14 3.7E+17 2.3E+15 13.9 13227.8 83.5
4.5 4.2E+14 4.9E+14 4.3E+14 15.2 17.8 15.4
4.7 4.4E+14 4.4E+14 4.2E+14 16.2 16.1 15.2
4.9 4.2E+14 4.3E+14 4.2E+14 15.5 15.8 15.3
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The results for test 4.5.1.5 are obtained by performing 1000 iterations of the vector recon-

struction algorithm using a noiseless detector image of the 1600oK fireball. The results for test

4.5.1.6 are obtained by performing 1000 iterations of the vector atmospheric reconstruction algo-

rithm with a detector image that is atmospherically attenuated. The original and reconstructed

input data cubes for both test cases are shown in Figure 5.30.
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Figure 5.30: This figure shows the reproduction of the original 1600oK fireball data cube by the
vector reconstruction algorithm. The reconstruction of atmospherically attenuated input data is
also shown with reconstruction failure in the λ = 4.3µm bin for both atmospheric reconstruction
methods.
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The photon sums in each bin are shown in Figure 5.31 and demonstrates good tracking of

the vector reconstruction algorithms on both clean and atmospherically attenuated input data.

However as with the previous test cases for the atmospheric reconstruction, the error in the sum

greatly increases in the low valued tatm(λ) bins. The inclusion of the atmospheric data with the

algorithm again shows better reconstruction performance.
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Figure 5.31: This figure shows the sum of photons in each wavelength bin for the 1600oK fireball
in the reconstructed data compared with the original data cube. The sum of photons for the
reconstruction of atmospherically attenuated detector data is also shown.

The remaining reconstruction results are shown in Tables 5.22 and 5.23. Again the data

indicates little drop-off in reconstruction performance when the atmospheric attenuation is included.

However as previously stated the exception is the low valued tatm(λ) bins at λ = 2.7µm and

λ = 4.3µm.
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Table 5.22: Uniform Fireball at 1600oK Vector Reconstruction Photon Sum Results For Clean
And Atmospherically Attenuated Data

Bin Orig Recon Recon Recon R/O R/O R/O
λ Number Number Number AINV Number AEST % % AINV % AEST

2.1 1.8E+16 1.8E+16 1.8E+16 1.8E+16 99.9 99.7 99.8
2.3 1.8E+16 1.8E+16 1.8E+16 1.8E+16 99.8 101.0 100.0
2.5 1.8E+16 1.8E+16 1.7E+16 1.8E+16 100.2 97.3 100.6
2.7 1.7E+16 1.7E+16 3.0E+16 1.5E+16 100.3 170.9 88.3
2.9 1.7E+16 1.7E+16 1.6E+16 1.7E+16 99.9 96.7 100.4
3.1 1.6E+16 1.6E+16 1.6E+16 1.6E+16 100.0 101.6 100.0
3.3 1.5E+16 1.5E+16 1.5E+16 1.5E+16 99.9 99.0 99.9
3.5 1.4E+16 1.4E+16 1.4E+16 1.4E+16 100.0 100.3 100.0
3.7 1.3E+16 1.3E+16 1.3E+16 1.3E+16 100.0 99.6 99.9
3.9 1.2E+16 1.2E+16 1.2E+16 1.2E+16 100.0 99.9 99.9
4.1 1.1E+16 1.1E+16 1.1E+16 1.1E+16 100.0 99.2 100.0
4.3 1.0E+16 1.0E+16 4.6E+17 1.7E+15 99.9 4456.4 16.3
4.5 9.7E+15 9.7E+15 9.7E+15 9.7E+15 100.2 100.3 100.5
4.7 9.1E+15 9.1E+15 9.0E+15 9.1E+15 100.1 99.2 100.1
4.9 8.5E+15 8.5E+15 8.5E+15 8.5E+15 99.8 100.2 99.9

A summary of the results for the uniform fireball test cases 4.5.1.1 to 4.5.1.6 is presented

in Table 5.24. The table indicates the better reconstruction performance obtained when including

the atmospheric data with the reconstruction algorithm for the 1000oK and 1600oK fireballs. The

apparent discrepancy with the 400oK fireball is again attributed to the Planckian nature of the

400oK blackbody, where emitted photon numbers greatly increase between 3 − 5µm.

The temperatures of each uniform fireball are also estimated from the reconstructed photon

data for each test case as shown in Table 5.25. The table shows the estimate obtained by each

atmospheric reconstruction algorithm method. The temperature estimates obtained from the direct

atmospheric inverse method are all higher than the nominal fireball temperature and show greater

error due to the low valued tatm(λ) bins. The reconstructed temperature is more accurate when

the atmospheric data is included within the reconstruction algorithm. However, when a mask is

applied to remove the low valued tatm(λ) bins, both atmospherically reconstructed temperatures

almost match the reconstructed temperature from the pristine detector data case.

112



Table 5.23: Uniform Fireball at 1600oK Vector Reconstruction REM Results For Clean And
Atmospherically Attenuated Data

Bin Error Error Error Error Error Error
λ Number Number AINV Number AEST % % AINV % AEST

2.1 6.9E+14 6.9E+14 6.9E+14 3.9 3.9 3.9
2.3 9.5E+14 9.4E+14 9.3E+14 5.3 5.2 5.1
2.5 1.4E+15 9.8E+14 1.4E+15 7.8 5.5 7.9
2.7 1.9E+15 1.2E+16 3.7E+15 11.2 70.9 21.2
2.9 2.2E+15 2.1E+15 2.2E+15 13.4 12.9 13.5
3.1 2.4E+15 2.4E+15 2.2E+15 15.1 15.0 14.1
3.3 2.3E+15 2.3E+15 2.2E+15 15.6 15.5 14.9
3.5 2.1E+15 2.1E+15 2.0E+15 15.2 15.3 14.7
3.7 2.0E+15 2.0E+15 1.9E+15 15.2 15.4 14.7
3.9 1.8E+15 1.8E+15 1.8E+15 14.9 15.2 15.0
4.1 1.6E+15 1.6E+15 1.6E+15 14.2 14.3 14.4
4.3 1.4E+15 4.5E+17 9.4E+15 13.8 4330.5 90.6
4.5 1.4E+15 1.4E+15 1.4E+15 14.1 14.6 14.0
4.7 1.3E+15 1.3E+15 1.2E+15 14.6 14.3 13.8
4.9 1.1E+15 1.1E+15 1.1E+15 13.1 13.1 13.1

Table 5.24: Uniform Fireballs Results Summary

Photon Sum Error REM
Test Case % %

1D (400oK) 0.0 - 57.1 4.4 - 102.8
1D + atm (post-inverse) 1.9 - 64.8 10.0 - 89.8
1D + atm (estimation) 0.0 - 82.0 4.4 - 99.9

1D (1000oK) 0.0 - 0.4 4.1 - 16.2
1D + atm (post-inverse) 0.0 - 3.2 4.1 - 17.8
1D + atm (estimation) 0.0 - 0.9 4.2 - 15.4

1D (1600oK) 0.0 - 0.3 3.9 - 15.6
1D + atm (post-inverse) 0.3 - 3.3 3.9 - 15.5
1D + atm (estimation) 0.0 - 0.6 3.9 - 15.0

Table 5.25: Uniform Fireballs Reconstructed Temperatures

Reconstructed Fireball Temperature
Test Case All Bins Error % With Mask Error %

1D (400K) 424 6.0
1D + atm (post-inverse) 904 126.0 423 5.8
1D + atm (estimation) 422 5.5 424 6.0

1D (1000K) 1003 0.3
1D + atm (post-inverse) 1234 23.4 1003 0.3
1D + atm (estimation) 987 -1.3 1003 0.3

1D (1600K) 1586 -0.9
1D + atm (post-inverse) 1652 3.3 1582 -1.1
1D + atm (estimation) 1566 -2.1 1584 -1.0
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5.6.2 Concentric Temperature Rings Fireball Results. The results for test 4.5.2.1 are

obtained by performing 100 iterations of the 2D reconstruction algorithm using a noiseless detector

image of the concentric rings fireball. The results for test 4.5.2.2 are are obtained by performing

100 iterations of the 2D atmospheric reconstruction algorithm with a detector image that is at-

mospherically attenuated. The original and reconstructed input data cubes for both test cases are

shown in Figure 5.32.
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Figure 5.32: This figure shows the reproduction of the original concentric rings fireball data cube
by both the 2D reconstruction algorithm and 2D atmospheric reconstruction algorithm. Note that
reconstruction of the atmospherically attenuated input data in the λ = 4.3µm bin is achieved for
this data set.
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The photon sums in each bin are shown in Figure 5.33 and demonstrate good tracking of

the 2D reconstruction algorithms on both clean and atmospherically attenuated input data. These

results also show better reconstruction of the low valued tatm(λ) bins possibly due to the high

number photons in the original data cube.
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Figure 5.33: This figure shows the sum of photons in each wavelength bin for the concentric
temperature rings fireball in the reconstructed 2D data cube compared with the original data cube.
The sum of photons for the reconstruction of atmospherically attenuated detector data is also
shown.
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The remaining reconstruction results are shown in Table 5.26. Again the data indicates little

drop-off in reconstruction performance when the atmospheric attenuation is included and also shows

good REM performance for the low valued tatm(λ) bins.

Table 5.26: Concentric Temperature Rings Fireball 2D Reconstruction Results For Clean And
Atmospherically Attenuated Data

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bin Bin Bin A % % A Photons Photons A % % A

2.1 8.9E+16 8.8E+16 8.9E+16 99.6 100.1 9.3E+15 9.3E+15 10.5 10.5
2.3 9.7E+16 9.8E+16 9.7E+16 100.7 99.7 1.2E+16 1.1E+16 12.1 11.4
2.5 1.0E+17 1.0E+17 1.0E+17 99.6 100.4 1.5E+16 1.5E+16 14.2 14.8
2.7 1.1E+17 1.0E+17 1.1E+17 99.9 100.2 1.6E+16 2.1E+16 15.2 19.7
2.9 1.1E+17 1.1E+17 1.1E+17 100.0 99.7 1.7E+16 1.7E+16 16.0 16.2
3.1 1.1E+17 1.1E+17 1.1E+17 100.1 100.1 1.8E+16 1.7E+16 16.7 16.6
3.3 1.0E+17 1.0E+17 1.0E+17 100.0 100.1 1.7E+16 1.7E+16 16.8 16.8
3.5 1.0E+17 1.0E+17 1.0E+17 100.1 100.1 1.7E+16 1.7E+16 16.4 16.4
3.7 9.8E+16 9.8E+16 9.8E+16 99.8 99.6 1.6E+16 1.6E+16 16.1 16.1
3.9 9.4E+16 9.4E+16 9.5E+16 99.9 100.3 1.5E+16 1.5E+16 15.9 15.8
4.1 9.1E+16 9.1E+16 9.1E+16 100.2 100.3 1.4E+16 1.4E+16 15.7 15.7
4.3 8.7E+16 8.7E+16 8.4E+16 100.1 96.4 1.3E+16 1.7E+16 15.5 19.3
4.5 8.3E+16 8.2E+16 8.1E+16 99.6 98.0 1.3E+16 1.3E+16 15.4 15.7
4.7 7.9E+16 7.9E+16 8.0E+16 100.4 100.9 1.2E+16 1.2E+16 15.3 15.3
4.9 7.5E+16 7.5E+16 7.5E+16 99.9 99.6 1.1E+16 1.1E+16 14.9 14.9
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The results for test 4.5.2.3 are obtained by performing 1000 iterations of the vector recon-

struction algorithm using a noiseless detector image of the concentric rings fireball. The results for

test 4.5.2.4 are are obtained by performing 1000 iterations of the vector atmospheric reconstruction

algorithm with a detector image that is atmospherically attenuated. The original and reconstructed

input data cubes for both test cases are shown in Figure 5.34.
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Figure 5.34: This figure shows the reproduction of the original concentric rings fireball data cube
by the vector reconstruction algorithm. The reconstruction of atmospherically attenuated input
data is also shows good performance across all bins using the estimated atmospheric inverse.
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The photon sums in each bin are shown in Figure 5.35 and demonstrate good tracking of the

vector reconstruction algorithms on the clean input data. Reconstruction of the photon sums for

the atmospherically attenuated data also shows good performance across all wavelength bins.
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Figure 5.35: This figure shows the sum of photons in each wavelength bin for the concentric
rings fireball in the reconstructed data compared with the original data cube. The sum of photons
for the reconstruction of atmospherically attenuated detector data is also shown.

The remaining reconstruction results are shown in Table 5.27. The data indicates little drop-

off in reconstruction performance across all wavelength bins when the atmospheric attenuation is

included.

A summary of the results for the concentric temperature rings fireball test cases 4.5.2.1

to 4.5.2.4 is presented in Table 5.28. The table indicates only a slight performance degradation

when atmospherically attenuated detector data is used in both the 2D and vector reconstruction

algorithms.

The temperatures of each ring and the background are also estimated from the reconstructed

photon data for each of the 2D test cases as shown in Table 5.29. The estimated temperature is

accurate to within 3% for each of the reconstructed rings and the background.
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Table 5.27: Concentric Temperature Rings Fireball Vector Reconstruction Results For Clean
And Atmospherically Attenuated Data

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bin Bin Bin A % % A Photons Photons A % % A

2.1 8.9E+16 8.9E+16 8.9E+16 100.5 100.2 2.4E+15 2.5E+15 2.7 2.8
2.3 9.7E+16 9.6E+16 9.7E+16 99.6 100.0 2.6E+15 2.6E+15 2.7 2.7
2.5 1.0E+17 1.0E+17 1.0E+17 98.6 99.3 2.9E+15 2.7E+15 2.8 2.7
2.7 1.1E+17 1.1E+17 1.1E+17 102.0 103.2 4.1E+15 5.1E+15 3.9 4.9
2.9 1.1E+17 1.1E+17 1.1E+17 99.7 100.4 3.6E+15 3.9E+15 3.4 3.6
3.1 1.1E+17 1.0E+17 1.1E+17 99.2 100.0 4.1E+15 3.9E+15 3.9 3.7
3.3 1.0E+17 1.0E+17 1.0E+17 100.4 100.1 4.1E+15 3.9E+15 3.9 3.7
3.5 1.0E+17 1.0E+17 1.0E+17 99.9 99.8 3.8E+15 3.8E+15 3.8 3.8
3.7 9.8E+16 9.8E+16 9.8E+16 100.2 100.1 3.7E+15 3.6E+15 3.7 3.7
3.9 9.4E+16 9.4E+16 9.4E+16 99.9 99.9 3.5E+15 3.4E+15 3.7 3.6
4.1 9.1E+16 9.1E+16 9.1E+16 100.1 100.0 3.2E+15 3.2E+15 3.5 3.5
4.3 8.7E+16 8.6E+16 8.6E+16 99.6 99.1 3.0E+15 3.5E+15 3.5 4.1
4.5 8.3E+16 8.3E+16 8.3E+16 100.3 100.1 2.9E+15 2.9E+15 3.5 3.5
4.7 7.9E+16 7.9E+16 7.9E+16 99.9 99.9 2.7E+15 2.7E+15 3.4 3.4
4.9 7.5E+16 7.5E+16 7.5E+16 100.0 100.0 2.4E+15 2.4E+15 3.2 3.2

Table 5.28: Concentric Temperature Rings Fireball Results Summary

Photon Sum Error REM
Test Case % %

2D 0 - 0.7 10.5 - 16.8
2D + atm 0.1 - 3.6 10.5 - 19.7

1D 0.0 - 2.0 2.7 - 3.9
1D + atm 0.0 - 3.2 2.7 - 4.9

Table 5.29: Concentric Temperature Rings Fireball Reconstructed Temperatures from 2D Re-
construction Algorithm

Reconstructed Fireball Temperature
Original Clean Data Atmospheric Data

Temperature Ring Estimate Error Estimate Error
K K % K %

1600 1602 0.1 1605 0.3
1500 1499 -0.1 1499 -0.1
1200 1203 0.3 1200 0.0
1000 981 -1.9 983 -1.7
800 819 2.4 823 2.9
300 299 -0.3 296 -1.3
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5.6.3 Hot-Spot Fireball Results. The results for test 4.5.3.1 are obtained by performing

100 iterations of the 2D reconstruction algorithm using a noiseless detector image of the hot-

spots fireball. The results for test 4.5.3.2 are are obtained by performing 100 iterations of the 2D

atmospheric reconstruction algorithm with a detector image that is atmospherically attenuated.

The original and reconstructed input data cubes for both test cases are shown in Figure 5.36.
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Figure 5.36: This figure shows the reproduction of the original hot-spots rings fireball data
cube by both the 2D reconstruction algorithm and 2D atmospheric reconstruction algorithm. The
reconstruction of the atmospherically attenuated input data in the λ = 4.3µm bin is not achieved
for this data set.
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The photon sums in each bin are shown in Figure 5.37 and demonstrate good tracking of

the 2D reconstruction algorithms on both clean and atmospherically attenuated input data. Once

again the deviation is greatest in the low valued tatm(λ) bins.
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Figure 5.37: This figure shows the sum of photons in each wavelength bin for the hot-spots
fireball in the reconstructed 2D data cube compared with the original data cube. The sum of
photons for the reconstruction of atmospherically attenuated detector data is also shown.
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The remaining reconstruction results are shown in Table 5.30. Again the data indicates little

drop-off in reconstruction performance when the atmospheric attenuation is included and also shows

degraded REM performance for the low valued tatm(λ) bins.

Table 5.30: Hot-Spots Fireball 2D Reconstruction Results For Clean And Atmospherically At-
tenuated Data

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bin Bin Bin A % % A Photons Photons A % % A

2.1 4.5E+16 4.5E+16 4.5E+16 99.3 99.2 1.0E+16 9.8E+15 22.1 21.7
2.3 4.9E+16 5.0E+16 5.0E+16 100.9 101.1 1.2E+16 1.2E+16 24.8 24.5
2.5 5.2E+16 5.1E+16 5.2E+16 99.3 99.5 1.4E+16 1.4E+16 26.4 26.5
2.7 5.3E+16 5.4E+16 4.5E+16 100.6 83.8 1.5E+16 3.6E+16 28.8 67.2
2.9 5.4E+16 5.4E+16 5.4E+16 100.0 100.1 1.7E+16 1.7E+16 31.2 31.7
3.1 5.3E+16 5.3E+16 5.4E+16 100.0 101.1 1.7E+16 1.8E+16 32.7 33.3
3.3 5.3E+16 5.3E+16 5.2E+16 99.9 99.0 1.8E+16 1.8E+16 33.9 34.9
3.5 5.1E+16 5.1E+16 5.2E+16 99.9 100.6 1.8E+16 1.8E+16 34.1 34.2
3.7 5.0E+16 5.0E+16 5.0E+16 100.0 99.2 1.7E+16 1.7E+16 34.6 34.4
3.9 4.8E+16 4.8E+16 4.9E+16 100.0 100.9 1.7E+16 1.7E+16 35.0 34.4
4.1 4.7E+16 4.7E+16 4.6E+16 100.1 99.4 1.7E+16 1.6E+16 35.5 35.2
4.3 4.5E+16 4.5E+16 3.6E+16 99.9 81.1 1.6E+16 5.3E+16 36.1 117.9
4.5 4.3E+16 4.3E+16 4.2E+16 99.7 98.2 1.6E+16 1.6E+16 36.5 37.5
4.7 4.1E+16 4.2E+16 4.2E+16 100.5 101.2 1.5E+16 1.5E+16 36.6 36.1
4.9 4.0E+16 4.0E+16 3.9E+16 99.7 99.4 1.4E+16 1.4E+16 35.3 35.0
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The results for test 4.5.3.3 are obtained by performing 1000 iterations of the vector recon-

struction algorithm using a noiseless detector image of the hot-spots fireball. The results for test

4.5.3.4 are are obtained by performing 1000 iterations of the vector atmospheric reconstruction al-

gorithm with a detector image that is atmospherically attenuated. The original and reconstructed

input data cubes for both test cases are shown in Figure 5.38.
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Figure 5.38: This figure shows the reproduction of the original hot-spots fireball data cube by
the vector reconstruction algorithm. The reconstruction of atmospherically attenuated input data
is also shown with degraded reconstruction performance in the λ = 4.3µm bin.
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The photon sums in each bin are shown in Figure 5.39 and demonstrate good tracking of the

vector reconstruction algorithms on the clean input data. Reconstruction of the photon sums is

also good for the atmospherically attenuated input data but degrades for the low valued tatm(λ)

bins at λ = 2.7µm and λ = 4.3µm.
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Figure 5.39: This figure shows the sum of photons in each wavelength bin for the hot-spots
fireball in the reconstructed data compared with the original data cube. The sum of photons for
the reconstruction of atmospherically attenuated detector data is also shown.

The remaining reconstruction results are shown in Table 5.31. The data indicates little drop-

off in reconstruction performance across most wavelength bins when the atmospheric attenuation

is included, with the exception of the λ = 4.3µm bin.

A summary of the results for the concentric temperature rings fireball test cases 4.5.3.1

to 4.5.3.4 is presented in Table 5.32. The table indicates only a slight performance degradation

when atmospherically attenuated detector data is used in both the 2D and vector reconstruction

algorithms. The reconstruction metrics for the low valued tatm(λ) bins are also shown.

The temperatures of each spot and the background are also estimated from the reconstructed

photon data for each of the 2D test cases as shown in Table 5.33. The estimated temperature is

accurate to within 5% for each of the reconstructed spots and the background.
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Table 5.31: Hot-Spots Fireball Vector Reconstruction Results For Clean And Atmospherically
Attenuated Data

Bin Orig Recon Recon R/O R/O Error Error Error Error
λ Bin Bin Bin A % % A Photons Photons A % % A

2.1 4.5E+16 4.5E+16 4.5E+16 100.2 100.2 3.1E+15 3.0E+15 6.7 6.7
2.3 4.9E+16 4.9E+16 4.9E+16 100.3 100.0 3.5E+15 3.5E+15 7.0 7.0
2.5 5.2E+16 5.1E+16 5.2E+16 98.7 99.4 3.5E+15 3.4E+15 6.7 6.6
2.7 5.3E+16 5.4E+16 5.2E+16 100.9 98.1 3.4E+15 6.3E+15 6.4 11.9
2.9 5.4E+16 5.4E+16 5.4E+16 100.2 100.7 3.3E+15 3.3E+15 6.1 6.2
3.1 5.3E+16 5.3E+16 5.3E+16 99.7 99.9 3.2E+15 3.2E+15 6.0 5.9
3.3 5.3E+16 5.3E+16 5.3E+16 100.4 100.2 3.2E+15 3.1E+15 6.1 6.0
3.5 5.1E+16 5.1E+16 5.1E+16 99.5 99.6 3.0E+15 3.0E+15 5.9 5.9
3.7 5.0E+16 5.0E+16 5.0E+16 100.1 99.9 3.0E+15 2.9E+15 5.9 5.9
3.9 4.8E+16 4.8E+16 4.8E+16 100.0 100.3 2.8E+15 2.8E+15 5.9 5.8
4.1 4.7E+16 4.7E+16 4.7E+16 100.0 99.9 2.8E+15 2.8E+15 5.9 5.9
4.3 4.5E+16 4.5E+16 3.5E+16 99.9 78.4 2.7E+15 1.9E+16 6.0 42.9
4.5 4.3E+16 4.3E+16 4.3E+16 100.5 100.6 2.9E+15 3.1E+15 6.6 7.2
4.7 4.1E+16 4.1E+16 4.1E+16 99.4 99.7 2.9E+15 2.7E+15 6.9 6.4
4.9 4.0E+16 4.0E+16 4.0E+16 100.2 100.1 2.6E+15 2.5E+15 6.6 6.4

Table 5.32: Hot-Spots Fireball Results Summary

Photon Sum Error REM
Test Case % %

2D 0.0 - 0.7 22.1 - 36.6
2D + atm 0.1 - 1.2 21.7 - 37.5

2D + atm: bad bins 16.2, 18.9 67.2, 117.9
1D 0.0 - 1.3 5.9 - 7.0

1D + atm 0.0 - 0.7 5.8 - 7.2
1D + atm: bad bins 1.9, 21.6 11.9, 42.9

Table 5.33: Hot-Spots Fireball Reconstructed Temperatures from 2D Reconstruction Algorithm

Reconstructed Fireball Temperature
Original Clean Data Atmospheric Data

Temperature Ring Estimate Error Estimate Error
K K % K %

1600 1665 4.1 1657 3.6
1500 1476 -1.6 1475 -1.7
1200 1176 -2.0 1179 -1.8
1000 994 -0.6 994 -0.6
600 571 -4.8 609 1.5
300 299 -0.3 292 -2.7
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5.7 Evolving Fireball Results

The results for test 4.6.1 are obtained by performing 1000 iterations of the vector recon-

struction algorithm using a noiseless detector image of the first evolving fireball. The original and

reconstructed input data cubes for test 4.6.1 are shown in Figure 5.40. Note that the original

data consists of an upper and lower vector corresponding to the fireball at 1600oK and 1500oK

respectively.
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Figure 5.40: This figure shows the reproduction of the first evolving fireball data cube by the
vector reconstruction algorithm. The reconstructed vector forms between the upper and lower
photon levels and hence is averaging the vector of the original fireball.

The photon sums in each bin are shown in Figure 5.41 and demonstrates the reconstruction

averaging the photons levels in the two original component fireball data cubes. The reconstruction

results in Table 5.34 also show the averaging effect of the vector reconstruction algorithm when

acting on the temporally evolving input data.
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Figure 5.41: This figure shows the sum of photons in each wavelength bin for the first evolving
fireball. The reconstruction algorithm averages the two components of the original input data cube.

Table 5.34: Evolving Fireball 1 Vector Reconstruction Results

Bin Orig Orig Recon R/OAV ErrorAV ErrorAV

λ Bin - Upper Bin - Lower Bin % Photons %

2.1 1.8E+16 1.3E+16 1.5E+16 98.5 6.2E+14 4.0
2.3 1.8E+16 1.4E+16 1.6E+16 99.2 8.7E+14 5.4
2.5 1.8E+16 1.4E+16 1.6E+16 98.7 1.1E+15 7.2
2.7 1.7E+16 1.4E+16 1.6E+16 100.0 1.7E+15 11.0
2.9 1.7E+16 1.3E+16 1.5E+16 98.9 1.9E+15 13.0
3.1 1.6E+16 1.3E+16 1.4E+16 99.2 2.1E+15 15.1
3.3 1.5E+16 1.2E+16 1.3E+16 99.4 2.1E+15 15.6
3.5 1.4E+16 1.1E+16 1.3E+16 99.3 2.0E+15 15.7
3.7 1.3E+16 1.1E+16 1.2E+16 99.6 1.9E+15 15.9
3.9 1.2E+16 1.0E+16 1.1E+16 99.7 1.7E+15 15.5
4.1 1.1E+16 9.5E+15 1.0E+16 99.8 1.5E+15 14.8
4.3 1.0E+16 8.9E+15 9.6E+15 99.6 1.4E+15 14.4
4.5 9.7E+15 8.3E+15 9.0E+15 99.2 1.2E+15 13.9
4.7 9.1E+15 7.9E+15 8.4E+15 99.4 1.2E+15 14.6
4.9 8.5E+15 7.4E+15 8.0E+15 100.2 1.1E+15 13.6
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The results for test 4.6.2 are obtained by performing 1000 iterations of the vector recon-

struction algorithm using a noiseless detector image of the first evolving fireball. The original and

reconstructed input data cubes for test 4.6.2 are shown in Figure 5.42. Note that the original

data consists of an upper and lower vector corresponding to the fireball at 1600oK and 1300oK

respectively.
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Figure 5.42: This figure shows the reproduction of the second evolving fireball data cube by
the vector reconstruction algorithm. The reconstructed vector forms between the upper and lower
photon levels and hence is averaging the vector of the original fireball.

The photon sums in each bin are shown in Figure 5.43 and demonstrates the reconstruction

averaging the photons levels in the two original component fireball data cubes. The reconstruction

results in Table 5.35 also show a slight degradation compared to the previous test case attributed

to the larger temperature difference between the fireball components.
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Figure 5.43: This figure shows the sum of photons in each wavelength bin for the second evolving
fireball. The reconstruction algorithm averages the two components of the original input data cube.

Table 5.35: Evolving Fireball 2 Vector Reconstruction Results

Bin Orig Orig Recon R/OAV ErrorAV ErrorAV

λ Bin - Upper Bin - Lower Bin % Photons %

2.1 1.8E+16 6.6E+15 1.2E+16 94.3 7.7E+14 6.3
2.3 1.8E+16 7.3E+15 1.2E+16 96.6 9.6E+14 7.6
2.5 1.8E+16 7.7E+15 1.2E+16 94.6 1.5E+15 11.8
2.7 1.7E+16 7.9E+15 1.3E+16 100.4 1.9E+15 15.2
2.9 1.7E+16 7.9E+15 1.2E+16 96.7 2.0E+15 16.5
3.1 1.6E+16 7.8E+15 1.1E+16 97.9 2.4E+15 20.2
3.3 1.5E+16 7.6E+15 1.1E+16 98.4 2.0E+15 18.0
3.5 1.4E+16 7.3E+15 1.0E+16 98.0 2.0E+15 19.3
3.7 1.3E+16 7.1E+15 9.8E+15 98.6 1.9E+15 19.5
3.9 1.2E+16 6.7E+15 9.3E+15 99.3 1.7E+15 18.4
4.1 1.1E+16 6.4E+15 8.7E+15 99.4 1.6E+15 17.9
4.3 1.0E+16 6.1E+15 8.2E+15 99.3 1.4E+15 16.4
4.5 9.7E+15 5.9E+15 7.6E+15 98.3 1.2E+15 15.6
4.7 9.1E+15 5.6E+15 7.2E+15 98.2 1.1E+15 14.5
4.9 8.5E+15 5.3E+15 6.9E+15 99.8 1.0E+15 14.8
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The results for test 4.6.3 are obtained by performing 1000 iterations of the vector recon-

struction algorithm using a noiseless detector image of the first evolving fireball. The original and

reconstructed input data cubes for test 4.6.3 are shown in Figure 5.44. Note that the original data

consists of an upper, mid and lower vector corresponding to the fireball at 1600oK, 1400oK and

1200oK respectively.
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Figure 5.44: This figure shows the reproduction of the third evolving fireball data cube by the
vector reconstruction algorithm. The reconstructed vector forms near the middle photon level
which is the center and also average of the original fireball.

The photon sums in each bin are shown in Figure 5.45 and demonstrates the reconstruction

averaging the photons levels in the three original component fireball data cubes. The reconstruction

results are also shown in Table 5.36.
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Figure 5.45: This figure shows the sum of photons in each wavelength bin for the third evolving
fireball. The reconstruction algorithm is averages the three components of the original input data
cube.

Table 5.36: Evolving Fireball 3 Vector Reconstruction Results

Bin Orig Orig Recon R/OAV ErrorAV ErrorAV

λ Bin - Upper Bin - Lower Bin % Photons %

2.1 1.8E+16 4.2E+15 1.0E+16 97.9 5.0E+14 4.7
2.3 1.8E+16 4.9E+15 1.1E+16 96.8 8.1E+14 7.3
2.5 1.8E+16 5.3E+15 1.1E+16 99.9 1.1E+15 9.7
2.7 1.7E+16 5.6E+15 1.1E+16 99.0 1.6E+15 14.1
2.9 1.7E+16 5.7E+15 1.1E+16 101.1 1.7E+15 15.8
3.1 1.6E+16 5.8E+15 1.1E+16 99.8 2.0E+15 19.4
3.3 1.5E+16 5.7E+15 1.0E+16 100.2 1.9E+15 18.4
3.5 1.4E+16 5.6E+15 9.6E+15 100.9 1.8E+15 19.2
3.7 1.3E+16 5.4E+15 9.1E+15 100.6 1.7E+15 19.1
3.9 1.2E+16 5.3E+15 8.6E+15 100.9 1.6E+15 18.4
4.1 1.1E+16 5.1E+15 8.1E+15 101.0 1.4E+15 17.7
4.3 1.0E+16 4.9E+15 7.6E+15 100.7 1.3E+15 16.6
4.5 9.7E+15 4.7E+15 7.2E+15 99.9 1.1E+15 16.0
4.7 9.1E+15 4.6E+15 6.7E+15 99.5 1.0E+15 15.5
4.9 8.5E+15 4.4E+15 6.7E+15 104.0 1.0E+15 16.3
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The results for test 4.6.4 are obtained by performing 1000 iterations of the vector recon-

struction algorithm using a noiseless detector image of the first evolving fireball. The original and

reconstructed input data cubes for test 4.6.4 are shown in Figure 5.46. Note that the original data

consists of an upper, mid and lower vector corresponding to the fireball at 1600oK, 1000oK and

400oK respectively.
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Figure 5.46: This figure shows the reproduction of the fourth evolving fireball data cube by the
vector reconstruction algorithm. The reconstructed vector forms above the middle photon level as
it is biased by the low photon levels for the 400oK component data.

The photon sums in each bin are shown in Figure 5.47 and show a degradation compared to

the previous test case. This is attributed to the large temperature differences between the original

fireball components resulting in different Planckian profiles of fireball. The reconstruction results

are also shown in Table 5.37.
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Figure 5.47: This figure shows the sum of photons in each wavelength bin for the fourth evolving
fireball. The reconstruction algorithm is averages the three components of the original input data
cube with a greater error than in the previous test case.

Table 5.37: Evolving Fireball 4 Vector Reconstruction Results

Bin Orig Orig Recon R/OAV ErrorAV ErrorAV

λ Bin - Upper Bin - Lower Bin % Photons %

2.1 1.8E+16 7.6E+10 6.7E+15 103.9 6.9E+14 10.8
2.3 1.8E+16 2.7E+11 7.0E+15 105.8 5.0E+14 7.5
2.5 1.8E+16 8.2E+11 5.1E+15 77.1 1.6E+15 24.0
2.7 1.7E+16 2.1E+12 7.2E+15 110.3 1.1E+15 16.9
2.9 1.7E+16 4.8E+12 6.4E+15 101.3 6.2E+14 9.8
3.1 1.6E+16 9.6E+12 5.6E+15 92.2 1.2E+15 19.0
3.3 1.5E+16 1.8E+13 6.2E+15 107.0 1.3E+15 23.2
3.5 1.4E+16 3.1E+13 5.5E+15 99.2 1.4E+15 25.3
3.7 1.3E+16 5.0E+13 5.1E+15 96.7 1.6E+15 29.9
3.9 1.2E+16 7.5E+13 5.1E+15 103.0 1.6E+15 31.9
4.1 1.1E+16 1.1E+14 4.5E+15 95.6 1.6E+15 33.2
4.3 1.0E+16 1.5E+14 4.5E+15 101.5 1.3E+15 29.6
4.5 9.7E+15 2.0E+14 4.2E+15 99.4 1.1E+15 27.1
4.7 9.1E+15 2.7E+14 3.9E+15 98.1 1.2E+15 29.8
4.9 8.5E+15 3.4E+14 4.4E+15 113.1 1.0E+15 26.5
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A summary of the results for the evolving fireball test cases 4.6.1 to 4.6.4 is presented in Table

5.38. The reconstruction metrics are given relative to the average of the input hyperspectral data

cube. The table also shows the reconstructed temperature which again demonstrates the vector

reconstruction algorithm producing the average of the input data. As discussed, the performance

drop-off in the final evolving fireball is attributed to the large temperature differences between the

original fireball components.

Table 5.38: Evolving Fireball Results Summary and Reconstructed Temperatures

Photon Sum Reconstructed Temperature
Error REM Temperature Error

Test Case % % K %

1600K to 1500K 0.0 - 1.5 4.0 - 15.9 1515 -2.3
1600K to 1300K 0.4 - 3.4 6.3 - 20.2 1436 -1.0

1600K to 1400K to 1200K 0.2 - 4.0 4.7 - 19.4 1402 0.1
1600K to 1000K to 400K 0.6 - 22.9 7.5 - 33.2 1233 23.3
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5.8 Analysis of Two-Dimensional Reconstruction Results

A summary of the 2D reconstruction results in this chapter is presented as follows:

• Spatial features of the original input data cube are reconstructed with blurring induced by

the CTIS optics.

• The Reconstruction Error Metric (REM) is more pronounced for point sources (binary stars:

2D: 16.5 to 148%) compared to extended sources (overlapping bars: 2D: 4.2 to 18.7%). This

trend increases as the wavelength increases, ie, it is directly proportional to the spatial extent

of the PSF which characterizes the optical blurring.

• Reconstruction of the total number of photons in each spectral bin is achievable enabling

absolute radiometry calculations in both blackbody point and extended sources. The absolute

radiometry is used to reconstruct the temperature of features in the imaged scene to within an

error margin of 3.9% for point sources (binary stars) and 4.1% for extended sources (concentric

rings fireball, hot-spots fireball).

• Reconstruction of the total number of photons is successful for atmospherically attenuated

data where the atmospheric transmission coefficient is greater than 3%, ie, tatm(λ) > 0.03.

These low valued atmospheric transmission coefficient bins can be masked from the recon-

structed temperature estimation resulting in reconstructed temperature estimates to within

3.6% of the nominal scene temperature (concentric rings fireball, hot-spots fireball).

• Reconstruction of the total number of photons in each wavelength bin on atmospherically

attenuated detector data produces little degradation (binary stars: 0.0%, monochromatic

numbers: 1.7%, concentric rings fireball: 2.9%, hot-spots fireball: 0.5%) in reconstruction

performance compared with pristine detector data. This is applicable for the wavelength bins

where the atmospheric transmission coefficient is greater than 3%, ie, tatm(λ) > 0.03.
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• There is little variation (binary star: 2.5%, monochromatic numbers: 1.3%, concentric rings

fireball: 2.9%, hot-spots fireball: 0.9%) in the reconstruction of spatial features, as measured

by the REM, when the atmospheric attenuation is included. This is again applicable for

the wavelength bins where the atmospheric transmission coefficient is greater than 3%, ie,

tatm(λ) > 0.03.

• Reconstruction of the total number of photons with noisy detector data shows little drop-off

in performance compared to the noiseless detector data (separate bars: 1%, overlapping bars:

5.2%, monochromatic numbers: 0.2%) .

• The REM slightly increases when reconstructing a noisy detector image compared to noiseless

detector data (separate bars: 4.6%, overlapping bars: 6.5%, monochromatic numbers: 1.2%)

• The 2D reconstruction algorithm can spectrally separate spatially overlapping sources. With

increasing spatial information and decreasing spatial correlation between bins, some spectral

bleeding may occur between adjacent bins (separate bars: 2.2%, overlapping bars: 6.4%) .

5.9 Analysis of Vector Reconstruction Results

A summary of the vector reconstruction results in this chapter is presented as follows:

• Spatial features of the vector in the original data cube are reconstructed with additional

diffractive blurring induced by the CTIS optics.

• The Reconstruction Error Metric (REM) is more pronounced for point sources (binary stars:

1D: 1.8 to 88.0%) compared to extended sources (overlapping bars: 1D: 4.2 to 48.2%).

• For the input data cube with spatial dimensions of 100 × 100 pixels, the REM increases

directly proportionally to the level of spatial features in the data cube (uniform fireballs:

3.9% to 17.8%, separate bars: 5.9% to 29.3% , overlapping bars: 4.2 to 48.2%).
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• Reconstruction of the total number of photons in an input data cube with spatial dimensions

of 100 × 100 pixels can show a significant drop-off in performance when compared to the

results of the equivalent 2D reconstruction (separate bars: 23.4%, overlapping bars: 33.1%).

• Reconstruction of the total number of photons in an input data cube with spatial dimension of

20×20 pixels is successful with highly comparable results to the equivalent 2D reconstruction

(separate bars, overlapping bars).

• For clean detector data, the reconstructed temperature estimate is within 1.6% of the nom-

inal temperature for blackbody point sources (binary star) and within 6.0% for extended

blackbody sources (uniform fireballs).

• For an input data cube with spatial dimensions of 100× 100 pixels, spectral bleeding signifi-

cantly increases in the vector reconstruction compared the 2D reconstruction (separate bars:

10.0%, overlapping bars: 13.8%).

• Reconstruction of the total number of photons is successful for atmospherically attenuated

data where the atmospheric transmission coefficient is greater than 3%, ie, tatm(λ) > 0.03.

• Of the two methods investigated, inclusion of the atmospheric data within the reconstruction

algorithm produces superior results in scene temperature reconstruction over the direct post-

processing atmospheric inversion method (uniform fireball: 2.1% temperature error compared

to 23.4%).

• For atmospherically attenuated detector data, the reconstructed temperature estimate is

within 0.8% of the nominal temperature for blackbody point sources (binary star) and within

5.8% for extended blackbody sources (uniform fireballs). This accuracy is achieved when the

low valued tatm(λ) are masked from the temperature estimate calculation.
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• For a noisy detector image of an input data cube with spatial dimensions of 100× 100 pixels,

there is little drop-off in REM compared with a noiseless detector image in reconstructing

the total number of photons in each wavelength bin (separate bars: 6.3%, overlapping bars:

3.1%).

• For a noisy detector image of an input data cube with spatial dimensions of 20 × 20 pixels,

degradation in performance of reconstructing spatial features as indicated by the REM can

be significant (separate bars: 44.1%, overlapping bars: 23.7%). This indicates a higher

susceptibility to noise of the smaller input data cube compared to the 100 × 100 input data

cube.

• Reconstruction of total photon numbers in each wavelength bin and the follow-on temperature

estimates do not degrade with the use of a non-zero temperature background in the input

temperature scene (binary star, uniform fireballs).

• The vector reconstruction algorithm can be applied to hyperspectral data from a temporally

evolving scene. This data category implies that the incident photon flux on the DVP is not

constant throughout one complete revolution of the DVP. For temporally evolving input data

the vector reconstruction algorithm will estimate the temporal average of the input data cube.

• An estimate of the reconstructed temperature at a pixel location in a temporally evolving

scene can be within 2.3% of the average temperature of the original scene location (evolving

fireball).
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VI. Conclusions and Recommendations

T
his chapter restates the research goals and provides a summary of the research conducted

in this thesis. Conclusions are documented on the performance of Estimation Theory based

reconstruction algorithms in estimating the hyperspectral content of an input scene. Significant

research results and recommendations for further work are also provided.

6.1 Restatement of Research Goals

The research goals in section 1.3 of this thesis are restated as follows:

• The development and evaluation of a CTIS detector reconstruction algorithm which maintains

absolute radiometric accuracy.

• The development and evaluation of a CTIS detector reconstruction algorithm capable of

imaging a temporally evolving input image scene.

• The investigation of two-dimensional versus one-dimensional CTIS detector reconstruction

algorithms in terms of absolute radiometric performance.

• The development and evaluation of a CTIS detector reconstruction algorithm which can be

applied to atmospherically attenuated detector data.

• The evaluation of the CTIS detector reconstruction algorithms in the presence of photon noise

at the detector.

6.2 Research Summary

Chapter I describes the concept of hyperspectral imagery and the format of the associated

hyperspectral data cubes. Hyperspectral imagery has applications in diverse imaging scenarios

providing substantial motivation to conduct further research in this area. The specific research
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goals of this thesis are stated in this chapter along with an overview of the organization of this

document.

Chapter II discusses conventional hyperspectral collection techniques and their inherent dis-

advantages. The concept and development of the Chromotomographic Imaging System (CTIS) is

presented. The CTIS optical configuration and post-processing requirements are documented along

with its concept of operation for collecting hyperspectral data.

Chapter III develops the discrete model of the CTIS. It includes the modelling assumptions

and design parameters used to implement the model. An optical propagation model of both the

POS and DOS are developed to simulate CTIS-like detector images. The 2D and vector input

hyperspectral reconstruction algorithms are derived along with methods for including the effects of

atmospheric attenuation on the detector images.

Chapter IV establishes the test cases used to verify the performance of the reconstruction

algorithms. For each test case an input hyperspectral data cube for the imaging scenario is gen-

erated. The effect of atmospheric attenuation is also applied to several of the input data cubes.

The input object data cubes, O(λ, u, v), are used as the input to the CTIS model which produces

the corresponding CTIS detector images. Additional photon noise is also applied to several of the

detector images. The detector images provide the input to the reconstruction algorithms which

provide an estimate, Ô(λ, u, v), of the original input hyperspectral data cube.

Chapter V demonstrates the performance of the reconstruction algorithms in estimating the

input hyperspectral data cube for each test case in chapter IV. Reconstruction is performed on

both the 2D detector image and the 1D x vector sum for several of the test cases. The treatment

of atmospheric attenuation and the addition of noisy detector data is also demonstrated in the

test cases. The chapter concludes with an analysis of the performance of the 2D and vector

reconstruction algorithms.
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6.3 Conclusions

6.3.1 2D Reconstruction Performance. The results in chapter V show good performance

of the 2D reconstruction algorithm for a variety of test cases. Temperature estimates calculated

from the reconstructed hyperspectral data cube are within 3.9% of the original temperature for

blackbody point sources and within 4.1% for extended blackbody sources. The algorithm also

spectrally separates spatially overlapping monochromatic extended sources.

6.3.2 Vector Reconstruction Performance. The vector reconstruction algorithm is viewed

as a method for recording and post-processing hyperspectral data at faster rate than required by

the 2D reconstruction algorithm. Though spatial features in the reconstruction are reduced to

1D, there may be applications where this is sufficient. Temperature estimates calculated from the

reconstructed hyperspectral vector data are within 1.6% of the original temperature for blackbody

point sources and within 6.0% for extended blackbody sources.

6.3.3 Reconstruction of Atmospherically Attenuated Detector Data. Both the 2D and

vector reconstruction algorithm can be modified to account for atmospherically attenuated detector

data. Absolute radiometric accuracy is maintained in the reconstructed data cube in the wavelength

bins where the atmospheric transmission coefficient is greater than 3%. Radiometric accuracy

improves by an order of magnitude when the atmospheric attenuation data is included within

the reconstruction algorithm. This is opposed to directly inverting the atmospheric attenuation

of the processed data cube following completion of the reconstruction iterations. Temperature

estimates calculated from the atmospherically attenuated detector data are within 3.6% of the

original temperature for 2D reconstructions and within 5.8% for vector reconstructions.
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6.3.4 Reconstruction of Noisy Detector Data. Both the 2D and vector reconstruction

algorithm perform well in the presence of noisy detector data showing little performance degradation

compared with noiseless detector data. The configuration of imaging a input hyperspectral data

cube with a smaller spatial extent is more susceptible to detector noise.

6.3.5 Reconstruction of Temporally Evolving Detector Data. The vector reconstruction

algorithm without any modification will reconstruct the temporal average of a temporally evolving

input hyperspectral data cube. The reconstructed temperature at a pixel location in a temporally

evolving scene can be within 2.3% of the average temperature of the original scene location. When

paired with the high optical throughput of the CTIS, the faster collection of scene vector sum data

and the faster processing time of the vector reconstruction algorithm, it is conceivable to apply a

CTIS instrument in a real-time hyperspectral imaging application. This application could utilize

a vector reconstruction as a first-look scan of a scene and then capture 2D hyperspectral data to

increase the spatial information of points of interest within the scene.

6.4 Significant Results of Research

6.4.1 Viability of an Estimation Theory Based CTIS Reconstruction Algorithm. This

research investigates an alternate approach to deterministic matrix inversion techniques in recon-

structing hyperspectral data cubes from a CTIS detector image. The results in chapter V show the

good performance of an Estimation Theory based reconstruction algorithm for reconstructing the

absolute radiometry and spatial features of a hyperspectral input data cube. These algorithms also

do not significantly degrade in the presence of noisy detector data. The radiometrically accurate

reconstruction of atmospherically attenuated detector data proves viable for wavelengths where

there is sufficient photon levels at the detector. The algorithm also exhibits stable performance

behaviour when reconstructing a temporally evolving hyperspectral input data cube.
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6.4.2 Trade-off Between 2D and Vector Reconstruction Algorithms. This research inves-

tigates comparable reconstructions of 2D and vector sum detector data. The 2D reconstructions

maintain absolute radiometric accuracy and reproduce the spatial features of the scene input hy-

perspectral data cube. The vector reconstructions maintain absolute radiometric accuracy, but

show some performance degradation as the spatial information in the scene increases. The spatial

information reproduced by the vector reconstruction algorithm is limited to a 1D sum of the input

scene. However the collection and post-processing of vector detector data can be performed at

a much higher rate than the 2D reconstruction. This potentially allows for CTIS applications in

real-time roles including the imaging temporally evolving scenes.

6.5 Recommendations for Future Work

6.5.1 Development of a CTIS Instrument. This research in developing radiometrically

accurate CTIS reconstruction algorithms complements previous AFIT CTIS work. In conjunction

with the propagation models developed by Dearinger in [6] and the sensor characterization work

completed by LeMaster in [13], the design tools are established to develop an imaging application

specific CTIS instrument. The overall design can be modelled with trade-off analyses undertaken

between the optical component requirements and the reconstruction performance.

6.5.2 Optimization of the Reconstruction Algorithm Implementation. The reconstruction

algorithms in this thesis are implemented in Matlabr. This implementation successfully demon-

strates the processing steps required for the reconstruction. However the utility of particularly the

2D reconstruction algorithm could be vastly improved by increasing the processing speed of the

algorithm. The advantages of faster processing speed include the manageable extension to more

wavelength bins in the reconstruction and also the use of greater algorithm iteration numbers to

improve the reconstruction performance.
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Other optimization related potential algorithm modifications include investigating the effect

of having the number of DVP rotation angles not equal to the number of wavelength bins. The

inclusion of an algorithm stopping criteria could also be investigated. This would be designed

to stop the algorithm iterating when the reconstructed hyperspectral data cube remains constant

within some threshold between consecutive algorithm iterations.

6.5.3 Development of Additional Reconstruction Algorithms. There are potential ex-

tensions, or tailoring, to the reconstruction algorithms that could be investigated depending on

potential specific imaging applications. One possible modification is to measure two orthogonal

vector sums, ie, both the x and y directions, of the detector data and attempt to estimate the

2D input hyperspectral data cube. Another possible extension applicable to imaging blackbody

sources is to directly estimate the temperature distribution in the scene using the Planck function

within the estimation algorithm. Additional transfer functions describing optical aberrations in-

duced by the CTIS optics and atmospheric turbulence could also be included within the estimation

algorithm.

6.5.4 Modelled PSF Accuracy Sensitivity Study. The reconstruction algorithms used

in this thesis assume perfect knowledge of the CTIS PSF. In a CTIS instrument there will be

aberrations resulting from the optical components. Atmospheric turbulence will also increase the

uncertainty in the overall scene and CTIS PSF. A study to investigate the effect of abberations on

reconstruction performance could be implemented.

6.5.5 Study of Reconstruction Accuracy versus Number of Algorithm Iterations. The 2D

reconstructions in this thesis all used 100 algorithm iterations while the vector reconstructions used

1000 iterations. This is to provide a consistent simulation set-up for each test case. A study to

investigate and quantify the reconstruction accuracy improvement per iteration of the algorithm

could be conducted.
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Appendix A. Spectral Refractive Indices of Optical Materials

T
he spectral refractive indices for both LiF and BaFl2 are published by Wolfe and Zissis

in [22]. The refractive indices for the wavelength range modelled in this thesis are repeated

as follows:

Table A.1: Spectral Refractive Indices of Lithium Fluoride (LiF)

Wavelength (λ) in µm Refractive Index
2.0 1.37875
2.5 1.37327
3.0 1.36660
3.5 1.35868
4.0 1.34942
4.5 1.33875
5.0 1.32661

Table A.2: Spectral Refractive Indices of Barium Fluoride (BaF2)

Wavelength (λ) in µm Refractive Index
1.97009 1.46470
2.1526 1.46412
2.32542 1.46356
2.5766 1.46271
2.6738 1.46237
3.2434 1.46017
3.422 1.45941
5.138 1.45014
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Appendix B. Additional Derivations

T
his appendix contains additional derivations of the mathematical models describing the

physical phenomena simulated in this thesis.

B.1 Rayleigh-Sommerfeld Diffraction Sum for Wave Optics Propagation Through a Lens

As demonstrated by Cain in [4] the following derivation applies the continuous Rayleigh-

Sommerfeld diffraction formula to the discrete domain of wave optics simulation. This derivation

is specific to simulating a wave optics propagation from a lens to a detector array.

The Rayleigh-Sommerfeld diffraction integral, as presented by Goodman in chapter 3 of [10],

describes the wave optics propagation of light between two parallel planes. This is mathematically

expressed as

U(x1, y1) =
1

jλ

∫∫

∑

U(x0, y0)

r01
ejkr01 cos θ dx0dy0 (B.1)

where U(x0, y0) is the electromagnetic field over a transmitting aperture plane
∑

and U(x1, y1)

is the field at a receiving plane. The distance between points on the planes is denoted r01 and

is a Pythagorean function of the perpendicular distance between the planes and transverse plane

coordinates (x0, y0) and (x1, y1). The angle of r01 with respect to the propagation normal direc-

tion is denoted as θ. The integral is applicable to monochromatic light with wavelength λ and

corresponding wave number k = 2π
λ

.

Propagation through a lens can be treated as a phase transformation in the electromagnetic

field between the field entering and exiting the lens. The phase transformation for a lens, tl(x, y),

is shown by Goodman in chapter 5 of [10] to be

tl(x, y) = e
−j2π(x2+y2)

2λf (B.2)
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where (x, y) are the transverse coordinates of the lens (perpendicular to direction of propagation),

f is the lens focal length and λ is the wavelength of the light.

Upon substituting equation B.2 into equation B.1, the continuous expression for wave optics

propagation through a lens becomes

U(x1, y1) =
1

jλ

∫∫

∑

tl(x0, y0)
U(x0, y0)

r01
ejkr01 cos θ dx0dy0 (B.3)

Several assumptions are now required to proceed with casting the continuous integral of

equation B.3 into a discrete sum that can be implemented as numerical simulation wave optics

code. The Pythagorean distance r01 between the points in the transmitting, or lens, plane and the

receiving, or detector plane, is expressed as

r01 =
√

f2 + (x − xd)2 + (y − yd)2 (B.4)

where (x, y) are the continuous transverse coordinates in the lens plane, (xd, yd) are transverse

coordinates at the detector and f is the lens focal length. Detectors are physically composed of

an array of pixels which combine to collect the overall image. Hence (xd, yd) can be regarded as

sampling coordinates of the field at the detector plane.

A paraxial approximation is now applied to r01 be rewriting it as

r01 = f

√

1 +
(x − xd)2 + (y − yd)2

f2
(B.5)

and using the Taylor series expansion of
√

1 + b ≈ 1 + b
2 − b2

8 · · · , which results in

r01 ≈ f

(
1 +

(x − xd)
2 + (y − yd)

2

2f2

)
(B.6)
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when the first two terms of the Taylor series are applied.

Also observe from trigonometry that

cos θ =
f√

f2 + (x − xd)2 + (y − yd)2
(B.7)

The continuous field at the lens must also be sampled in order to model the propagation.

As such (xl, yl) are treated as discrete samples of the lens such that the continuous field U(x, y)

exiting the lens is represented as by the sampled field U(xl, yl).

The approach for determining the discrete field at the detector begins by considering the

contribution from a single sample of the lens. The field at the detector resulting from a single lens

sample is denoted ULS(xd, yd).

The limits of the integration at equation B.3 correspond to the spatial extent of the lens

sample being propagated. This can be expressed as xl ± ∆
2 and yl ± ∆

2 where ∆ is the side-length

of the lens sample with the assumption that the lens sample is square. This indexing places the

lens sample coordinate (xl, yl) at the midpoint of the lens sample.

Using the paraxial approximation at equation B.6 in the exponential, the lens transformation

at equation B.2 and substituting equation B.7 for cosθ, equation B.3 represents ULS(xd, yd) as

ULS(xd, yd) =
1

jλ

∫ xl+
∆
2

xl−
∆
2

∫ yl+
∆
2

yl−
∆
2

U(xl, yl)√
f2 + (x − xd)2 + (y − yd)2

f√
f2 + (x − xd)2 + (y − yd)2

× · · ·

e
j2π

λ
f

(
1+

(x−xd)2+(y−yd)2

2f2

)

e
−j2π(x2+y2)

2λf dxdy

=
e

j2π
λ

f

jλ

∫ xl+
∆
2

xl−
∆
2

∫ yl+
∆
2

yl−
∆
2

U(xl, yl)f

f2 + (x − xd)2 + (y − yd)2
e

j2π
λ

f

(
(x−xd)2+(y−yd)2

2f2

)

e
−j2π(x2+y2)

2λf dxdy

(B.8)
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Using the assumption that the propagation distance is much larger than the extent of the difference

between the lens and detector coordinates allows the following approximation

f

f2 + (x − xd)2 + (y − yd)2
≈ f

f2 + (xl − xd)2 + (yl − yd)2
≡ Ψ (B.9)

which provides a discrete ratio that is independent of continuous (x, y). This ratio, denoted Ψ, is

substituted into equation B.8 resulting in

ULS(xd, yd) ≈ e
j2π

λ
f

jλ

∫ xl+
∆
2

xl−
∆
2

∫ yl+
∆
2

yl−
∆
2

Ψ U(xl, yl) e
j2π

(
(x−xd)2+(y−yd)2

2λf

)

e
−j2π(x2+y2)

2λf dxdy

≈ Ψ e
j2π

λ
f

jλ

∫ xl+
∆
2

xl−
∆
2

∫ yl+
∆
2

yl−
∆
2

U(xl, yl) e
j2π
2λf ((x−xd)2+(y−yd)2−(x2+y2))dxdy

≈ Ψ e
j2π

λ
f

jλ

∫ xl+
∆
2

xl−
∆
2

∫ yl+
∆
2

yl−
∆
2

U(xl, yl) e
j2π
2λf (x2−2xxd+x2

d+y2−2yyd+y2
d−x2−y2))dxdy

≈ Ψ

jλ
e

j2π
λ

fe
jπ
λf

(x2
d+y2

d)

∫ xl+
∆
2

xl−
∆
2

∫ yl+
∆
2

yl−
∆
2

U(xl, yl) e
−j2π

λf
(xxd+yyd)dxdy

≈ Ψ

jλ
e

j2π
λ

fe
jπ
λf

(x2
d+y2

d)U(xl, yl)

∫ xl+
∆
2

xl−
∆
2

e
−j2π

λf
(xxd)dx

∫ yl+
∆
2

yl−
∆
2

e
−j2π

λf
(yyd)dy

≈ Ψ

jλ
e

j2π
λ

fe
jπ
λf

(x2
d+y2

d)U(xl, yl)

[
−λf

j2πxd

e
−j2π

λf
(xxd)

∣∣∣∣
x = xl+

∆
2

x = xl−
∆
2

]
× · · ·

[
−λf

j2πyd

e
−j2π

λf
(yyd)

∣∣∣∣
y = yl+

∆
2

y = yl−
∆
2

]

≈ Ψ

jλ
e

j2π
λ

fe
jπ
λf

(x2
d+y2

d)U(xl, yl)

[ −λf

j2πxd

e
−j2πxlxd

λf

(
e

jπ∆xd
λf − e

−jπ∆xd
λf

)]
× · · ·

[ −λf

j2πyd

e
−j2πylyd

λf

(
e

jπ∆yd
λf − e

−jπ∆yd
λf

)]

≈ Ψ

jλ
e

j2π
λ

fe
jπ
λf

(x2
d+y2

d)U(xl, yl)

[ −λf

j2πxd

e
−j2πxlxd

λf

{
−2j sin

(
π∆xd

λf

)}]
× · · ·

[ −λf

j2πyd

e
−j2πylyd

λf

{
−2j sin

(
π∆yd

λf

)}]

≈ Ψ

jλ
e

j2π
λ

fe
jπ
λf

(x2
d+y2

d)U(xl, yl)

[
e

−j2πxlxd
λf

sin π∆xd

λf

πxd

λf

][
e

−j2πylyd
λf

sin π∆yd

λf
πyd

λf

]

(continued overpage)
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ULS(xd, yd) ≈ Ψ

jλ
e

j2π
λ

fe
jπ
λf

(x2
d+y2

d)U(xl, yl)

[
e

−j2πxlxd
λf

∆sin π∆xd

λf

∆πxd

λf

][
e

−j2πylyd
λf

∆sin π∆yd

λf

∆πyd

λf

]

≈ Ψ

jλ
e

j2π
λ

fe
jπ
λf

(x2
d+y2

d)U(xl, yl)∆
2

[
e

−j2πxlxd
λf sinc

(
π∆xd

λf

)] [
e

−j2πylyd
λf sinc

(
π∆yd

λf

)]

≈ Ψ

jλ
e

j2π
λ

fe
jπ
λf

(x2
d+y2

d)∆2sinc

(
π∆xd

λf

)
sinc

(
π∆yd

λf

)
U(xl, yl) e

−j2πxlxd
λf e

−j2πylyd
λf

(B.10)

The field resulting from all lens samples is then the field sum of the contribution from each

sample. This is represented as the sum of equation B.10 over the index to each lens sample in

accordance with

U(xd, yd) ≈
N∑

n=1

M∑

m=1

ULS(xd, yd)

≈
N∑

n=1

M∑

m=1

Ψ

jλ
e

j2πf
λ e

jπ
λf

(x2
d+y2

d)∆2sinc

(
π∆xd

λf

)
sinc

(
π∆yd

λf

)
× · · ·

U(xn, ym) e
−j2πxnxd

λf e
−j2πymyd

λf (B.11)

where the subscripts on U(xn, ym) combine to index over all lens samples.

In order to simplify equation B.11 consider the following grouping of the exponential terms

e
j2πf

λ e
jπ(x2

d
+y2

d
)

λf e
−j2πxnxd

λf e
−j2πymyd

λf = e
j2πf

λ e
jπ(x2

d
+y2

d
)

λf e
−j2πxnxd

λf e
−j2πymyd

λf e
j2π(x2

n+y2
m)

2λf e
−j2π(x2

n+y2
m)

2λf

= e
−j2π(x2

n+y2
m)

2λf e
j2πf

λ e
j2π((xn−xd)2+(ym−yd)2)

2λf

= e
−j2π(x2

n+y2
m)

2λf e
j2π

λ

(
f+

(xn−xd)2+(ym−yd)2

2f

)

= e
−j2π(x2

n+y2
m)

2λf e
j2πf

λ

(
1+

(xn−xd)2+(ym−yd)2

2f2

)

= e
−j2π(x2

n+y2
m)

2λf e
j2πf

λ

√
1+

(xn−xd)2+(ym−yd)2

f2

= e
−j2π(x2

n+y2
m)

2λf e
j2π

√
f2+(xn−xd)2+(ym−yd)2

λ

= tl(xn, ym)e
j2π

√
f2+(xn−xd)2+(ym−yd)2

λ

(B.12)
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The simplification in equation B.12 is substituted into equation B.11 as

U(xd, yd) ≈
N∑

n=1

M∑

m=1

Ψ

jλ
e

j2πf
λ e

jπ
λf

(x2
d+y2

d)∆2sinc

(
π∆xd

λf

)
sinc

(
π∆yd

λf

)
× · · ·

U(xn, ym) e
−j2πxnxd

λf e
−j2πymyd

λf

≈ ∆2

jλ

N∑

n=1

M∑

m=1

Ψ sinc

(
π∆xd

λf

)
sinc

(
π∆yd

λf

)
U(xn, ym) tl(xn, ym)e

j2π
√

f2+(xn−xd)2+(ym−yd)2

λ

(B.13)

The discrete propagation distance Ψ at equation B.9 between lens samples and detector

pixels is then substituted into equation B.13 to determine the final form of the discrete Rayleigh-

Sommerfeld propagation expression as

U(xd, yd) ≈
f∆2

jλ

N∑

n=1

M∑

m=1

U(xn, ym)tl(xn, ym) e
j2π

λ

√
f2+(xn−xd)2+(ym−yd)2

f2 + (xn − xd)2 + (ym − yd)2
sinc

(
π∆xd

fλ

)
sinc

(
π∆yd

fλ

)

(B.14)

Also note that the intensity at the detector, I(xd, yd), is the complex square of the electro-

magnetic field given by

I(xd, yd) = |U(xd, yd)|2 = U(xd, yd) × U∗(xd, yd) (B.15)

when propagation calculations result in flux units of photons
second

as used in this thesis (as opposed to

using flux units of Watts).
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Appendix C. Matlabr Code

C.1 Summary of Matlabr files

This section provides a summary the Matlabr files developed to conduct the test cases in

chapter IV.

Table C.1: Matlabr Files For Generating Hyperspectral Data Cubes

Matlabr File Test Case Scenario Test Case Number
make binary atm Binary Star Pair 4.1.1, 4.1.2, 4.1.3, 4.1.4
make slabs 1b Spatially Separate 4.2.1, 4.2.2, 4.2.3

Monochromatic Source 4.2.4, 4.2.5, 4.2.6
make slabs 2 Spatially Overlapping 4.3.1, 4.3.2, 4.3.3

Monochromatic Source 4.3.4, 4.3.5, 4.3.6
make number cube Monochromatic Numbers Source 4.4.1, 4.4.2, 4.4.3
make fireball atm 2 Uniform Fireball 4.5.1.1, 4.5.1.2, 4.5.1.3

4.5.1.4, 4.5.1.5, 4.5.1.6
make fireball rings atm 2 Concentric Temperature 4.5.2.1, 4.5.2.2

Rings Fireball 4.5.2.3, 4.5.2.4
make fireball spots atm 2 Hot-Spot Fireball 4.5.3.1, 4.5.3.2

4.5.3.3, 4.5.3.4
make fireball atm series Evolving Fireballs 4.6.1, 4.6.2, 4.6.3, 4.6.4

Table C.2: Matlabr Files For Generating CTIS Detector Images

Matlabr File Test Case Scenario Test Case Number
At dectr 15 bins All static test cases 4.1.1 to 4.5.3.4
At dectr evolve 15 bins Evolving Fireballs 4.6.1, 4.6.2, 4.6.3, 4.6.4
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Table C.3: Matlabr Files For 2D And Vector Reconstruction Algorithms

Matlabr File Test Case Scenario Test Case Number
Recon 2D no atm stars Binary Star Pair 4.1.1
Recon 2D atm stars 4.1.2
Recon vector no atm 15 stars 4.1.3
Recon vector atm 15 stars 4.1.4
Recon 2D no atm big bars Both Spatially Separate and 4.2.1, 4.2.2

Spatially Overlapping 4.3.1, 4.3.2
Monochromatic Sources

Recon vector big scene 4.2.3, 4.2.4, 4.2.5, 4.2.6
4.3.3, 4.3.4, 4.3.5, 4.3.6

Recon 2D no atm numbers Monochromatic Numbers Source 4.4.1, 4.4.3
Recon 2D atm numbers 4.4.2
Recon 2D no atm fball rings1 Static Fireballs 4.5.2.1, 4.5.3.1
Recon 2D atm fball rings1 4.5.2.2, 4.5.3.2
Recon vector 15 uni fball 4.5.1.1, 4.5.1.3, 4.5.1.5

4.5.2.3, 4.5.3.3
Recon vector 15 atm combo 4.5.1.2, 4.5.1.4, 4.5.1.6

4.5.2.4, 4.5.3.4
Recon vector 15 evolve fball Evolving Fireballs 4.6.1, 4.6.2, 4.6.3, 4.6.4

Table C.4: Miscellaneous CTIS Matlabr Files

Matlabr File Purpose
Atmo calculator Calculates the atmospheric transmission coefficient

for each wavelength bin
Index inter 3 Calculates the spectral refractive indices for the DVP optical materials
Make OTF dectr no fftshift Calculates the 2D OTF of the modelled CTIS
Make OTF dectr vector Calculates the 1D OTF of the modelled CTIS
Prism rays 3 Calculates the radial spectral shift produced by the DVP
PSFs RS fn Calculates the unshifted spectral PSF for light at the center wavelength

at each bin
Results (various) Presents the results for each reconstruction data run
Atmo data 15 bins Data file of atmospheric transmission coefficients
at dectr(various) Data file of the CTIS detector images produced by “At dectr 15 bins”

and “At dectr evolve 15 bins”
bin data 15 Data file of the parameters for each wavelength bin
data run(various) Data file of the output of the 2D and vector reconstruction

algorithms in Table C.3
DVP angles 15 Data file of the DVP rotation angles used in the simulations
otf dectr(various) Data file of the 2D OTF produced by “Make OTF dectr no fftshift”
OTF15 vectors (various) Data file of OTF vectors produced by “Make OTF dectr vector”
photons(various) Data file of the output from hyperspectral data cube generating

files in Table C.1
PSF unshifted 15 Data file of the unshifted spectral PSFs produced by “PSFs RS fn”
Shifts(various) Data file of the cartesian spectral shifts
Pixel temperature fit(various) Temperature fitting to estimated hyperspectral data cubes

produced by 2D and vector reconstruction algorithms
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C.2 Matlabr Files For Generating Hyperspectral Data Cubes

C.2.0.1 make binary atm.m. This file generates the hyperspectral data cubes for
the binary star pair.

clear all

% Fundamental constants.

c = 299792458;

light_year = c * 60 * 60 * 24 * 365; % units of meters

h = 6.6260755e-34;

kB = 1.380658e-23;

% Atmospheric coefficient data

load Atmo_data_15

%load Atmo_data_50

% Number of bins being used and bin parameters for

% selected wavelength range of 2 to 5 microns

bins = length(atmo_av_trans);

int = (5-2)/bins;

lamda = 2:int:5-int;

bin_low_cent_high = [lamda’ lamda’+int/2 lamda’+int];

% Number of pixels along a side of the true image

% This limits the spatial extent of the object image cube

N = 20; %100;

x = -N/2:N/2-1;

[X,Y] = meshgrid(x,x);

% True temperature of object cube in units of degrees kelvin

truth = zeros(N) + 10;

% Background temperature of space is listed at 3 degrees Kelvin

% Create random background temperature from a Poisson RV with mean 10

%truth = zeros(N) + poissrnd(10,N,N);

truth(11,7) = 10000; % Star 1 has a temperature of 5000 K

truth(11,14) = 5000; % Star 2 has a temperature of 10000 K

figure(1), imagesc(truth), colorbar(’vert’), axis square xy

% Gives the spectral photon radiance [photons/sec - cm^2 - sr - um] as a

% sum of "sub_lamda" sub-bin areas in each wavelength bin.

sub_lamda = 100;

for index = 1:bins

lamda_base = lamda(index):int/sub_lamda:lamda(index) + int - int/sub_lamda;

temporary = zeros(N);

for count = 1:sub_lamda

temporary = temporary + (2 * c * 1e14) ./ (lamda_base(count)^4 .* ...

(exp(h*c./(lamda_base(count)*1e-6*kB.*truth)) - 1)) * int/sub_lamda;

end

rad_p(index,:,:) = temporary;

end

%figure(1), for k = 1:15, temp = squeeze(rad_p(k,:,:));

%imagesc(temp), colorbar(’vert’), axis square xy, pause(.2), end

sol_rad = 6.96e10; % Solar radii in units of centimetres % 1 solar radii = 6.96e8 meters

R1 = 2.5 ; %.25; % Radius of star 1 in units of Solar Radii;

R2 = 1.1 ; %5; % Radius of star 2 in units of Solar Radii;

A1 = pi*(R1*sol_rad)^2; % Projected area of star1 in centimetres
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A2 = pi*(R2*sol_rad)^2; % Projected area of star2 in centimetres

Dist = 50; % Light years

D = .1; % diameter of the telescope in meters;

SR1 = (D/2)^2*pi/(Dist * light_year)^2; % Solid angle subtended by star 1 to sensor

SR2 = (D/2)^2*pi/(Dist * light_year)^2; % Solid angle subtended by star 2 to sensor

dt=.001; % Integration time in seconds of the CCD camera

% Calulates the photon flux at detector using Flux = Rad_p * Area of source * Solid angle

% ie, (Lp*As*Ad/r) where Lp = Rad_p, As = Area of source, Ad = Area of detector

% and r = distance between source and detector

for index = 1 :bins

temp = squeeze(rad_p(index,:,:));

photons(index,:,:) = [temp(:,1:10)*dt*A1*SR1 temp(:,11:20)*dt*A2*SR2];

end

% This loop creates x & y vector sums of the source photons with no atmospheric attenuation

for k = 1:bins

photons_x(k,:) = sum(squeeze(photons(k,:,:)));

photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end

% This loop attenuates photons by atmospheric transimission coefficients

%for index = 1:bins, photons(index,:,:) = photons(index,:,:) * atmo_av_trans(index); end

% Physical photons exists in integer quantities

photons = round(photons); %Rounds #photons to an integer

%figure(1), for k = 1:15, temp = squeeze(photons(k,:,:));

%imagesc(temp), colorbar(’vert’), axis square xy, pause(.2), end

h = 1;

figure(1), for k = [1 5 10 15],

temp = squeeze(photons(k,:,:));

subplot(2,2,h), imagesc(temp), h = h+1;

title([’Photons @ \lambda = ’ num2str(bin_low_cent_high(k,2)) ’\mum’])

colorbar(’vert’), axis square xy,

end

figure(2)

for k = 1:bins, temp = squeeze(photons(k,:,:)); star1(k) = sum(sum(temp(:,1:10)));

star2(k) = sum(sum(temp(:,11:20))); end

subplot(211), plot(bin_low_cent_high(:,2), star1,’r+’), legend(’Original Star 1 @ T = 10000K’)

xlabel(’Wavelength - \mum’), ylabel(’Number of Photons’)

subplot(212), plot(bin_low_cent_high(:,2), star2,’rx’), legend(’Original Star 2 @ T = 5000K’)

xlabel(’Wavelength - \mum’), ylabel(’Number of Photons’)

whos
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C.2.0.2 make slabs 1b. This file generates the hyperspectral data cubes for the
spatially separate monochromatic source.

clear all

N = 20;

bins = 15;

back = zeros(N);

photons = zeros(bins,N,N);

temp = back;

temp(3:18,2:4) = 5;

photons(1,:,:) = temp;

temp = back;

temp(3:18,17:19) = 5;

photons(4,:,:) = temp;

temp = back;

temp(3:5,7:14) = 5;

photons(8,:,:) = temp;

temp = back;

temp(9:12,7:14) = 5;

photons(12,:,:) = temp;

temp = back;

temp(16:18,7:14) = 5;

photons(15,:,:) = temp;

for k = 1:bins

temp = squeeze(photons(k,:,:));

photonb(k,:,:) = imresize(temp,5);

end

photons = photonb;

for k = 1:bins

photons_x(k,:) = sum(squeeze(photons(k,:,:)));

photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end
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C.2.0.3 make slabs 2. This file generates the hyperspectral data cubes for the
spatially overlapping monochromatic source.

clear all

N = 20;

bins = 15;

back = zeros(N);

photons = zeros(bins,N,N);

temp = back;

temp(3:18,2:6) = 5;

photons(1,:,:) = temp;

temp = back;

temp(3:18,15:19) = 5;

photons(5,:,:) = temp;

temp = back;

temp(3:7,3:18) = 5;

photons(10,:,:) = temp;

temp = back;

temp(14:18,3:18) = 5;

photons(15,:,:) = temp;

for k = 1:bins

temp = squeeze(photons(k,:,:));

photonb(k,:,:) = imresize(temp,5);

end

photons = photonb;

for k = 1:bins

photons_x(k,:) = sum(squeeze(photons(k,:,:)));

photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end

C.2.0.4 make number cube. This file generates the hyperspectral data cubes for the
spatially separate monochromatic source.

clear all

level = 100;

open one.jpg, temp = one;

open two.jpg, temp = two;

open three.jpg, temp = three;

open four.jpg, temp = four;

open five.jpg, temp = five;

open six.jpg, temp = six;

open seven.jpg, temp = seven;

open eight.jpg, temp = eight;

open nine.jpg, temp = nine;

open ten.jpg, temp = ten;

open eleven.jpg, temp = eleven;

open twelve.jpg, temp = twelve;

open thirteen.jpg, temp = thirteen;

open fourteen.jpg, temp = fourteen;
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open fifteen.jpg, temp = fifteen;

temp=sum(temp,3);

temp = level * (temp<=500);

figure(1), imagesc(temp), colorbar(’vert’)

NC1 = temp;

NC2 = temp;

NC3 = temp;

NC4 = temp;

NC5 = temp;

NC6 = temp;

NC7 = temp;

NC8 = temp;

NC9 = temp;

NC10 = temp;

NC11 = temp;

NC12 = temp;

NC13 = temp;

NC14 = temp;

NC15 = temp;

photons(1,:,:) = flipud(NC1);

photons(2,:,:) = flipud(NC2);

photons(3,:,:) = flipud(NC3);

photons(4,:,:) = flipud(NC4);

photons(5,:,:) = flipud(NC5);

photons(6,:,:) = flipud(NC6);

photons(7,:,:) = flipud(NC7);

photons(8,:,:) = flipud(NC8);

photons(9,:,:) = flipud(NC9);

photons(10,:,:) = flipud(NC10);

photons(11,:,:) = flipud(NC11);

photons(12,:,:) = flipud(NC12);

photons(13,:,:) = flipud(NC13);

photons(14,:,:) = flipud(NC14);

photons(15,:,:) = flipud(NC15);

for k = 1:15

temp1 = squeeze(photons(k,:,:));

figure(1), subplot(111)

imagesc(temp1), axis square xy

pause(0.5)

end

for k = 1:15

photons_x(k,:) = sum(squeeze(photons(k,:,:)));

photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end

whos
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C.2.0.5 make fireball atm 2. This file generates the hyperspectral data cubes for
the uniform fireballs.

clear all

tic

% Fundamental constants.

c = 299792458;

h = 6.6260755e-34;

kB = 1.380658e-23;

load Atmo_data_15

N = 100; % number of pixels along a side of the true image

x = -N/2:N/2-1;

[X,Y] = meshgrid(x,x);

R = sqrt(X.^2 +Y.^2);

ball = (R<=5); figure(1), subplot(111), imagesc(ball)

back = (ball~=1); figure(1), imagesc(back)

%truth = zeros(N,N)+10; %units of degrees kelvin

%truth = ball * 1600 + back .* normrnd(300,10,N,N); %units of degrees kelvin

%truth = ball * 1000 + back .* normrnd(300,10,N,N); %units of degrees kelvin

truth = ball * 400 + back .* normrnd(300,10,N,N); %units of degrees kelvin

figure(1), imagesc(truth), colorbar(’vert’), axis square xy

bins = 15;

int = (5-2)/bins;

lamda = 2:int:5-int; % My selected wavelength range

bin_low_cent_high = [lamda’ lamda’+int/2 lamda’+int];

% Gives the spectral photon radiance [photons/sec - cm^2 - sr - um] as a

% sum of "sub_lamda" sub-bin areas in each wavelength bin.

sub_lamda = 100;

for index = 1:bins

lamda_base = lamda(index):int/sub_lamda:lamda(index) + int - int/sub_lamda;

temporary = zeros(N,N);

for count = 1:sub_lamda

temporary = temporary + (2 * c * 1e14) ./ (lamda_base(count)^4 .* ...

(exp(h*c./(lamda_base(count)*1e-6*kB.*truth)) - 1)) * int/sub_lamda;

end

rad_p(index,:,:) = temporary;

end

%Projected area of a square pixel at 3258m entered in metres^2 converted to centimetres^2

A1 = 3.258^2 * 1000;

D = .1; % diameter of the telescope in metres;

Dist = 3258; % Distance for fireball to sensor in metres

SR = D*D*pi/(4*Dist); % Solid angle subtended by sensor to fireball range

dt=.001; % Integration time in seconds of the CCD camera

%dt = .01;

for index = 1:bins

photons(index,:,:) = squeeze(rad_p(index,:,:)) * dt * A1 * SR;

end
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% This loop creates x & y vector sums of the source photons with no atmospheric attenuation

for k = 1:bins

photons_x(k,:) = sum(squeeze(photons(k,:,:)));

photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end

% This loop adds in atmospheric attenuation

for index = 1:bins, photons(index,:,:) = photons(index,:,:) * atmo_av_trans(index); end

photons = round(photons); %Rounds #photons to an integer

%whos

toc

C.2.0.6 make fireball rings atm 2. This file generates the hyperspectral data cubes
for the concentric temperature rings fireball.

clear all

tic

% Fundamental constants.

c = 299792458;

h = 6.6260755e-34;

kB = 1.380658e-23;

load Atmo_data_15

%load Atmo_data_30

N = 100; % number of pixels along a side of the true image

x = -N/2:N/2-1;

[X,Y] = meshgrid(x,x);

R = sqrt(X.^2 +Y.^2);

ball1 = (R<=5);

ball2 = (R>5 & R<=10);

ball3 = (R>10 & R<=15);

ball4 = (R>15 & R<=20);

ball5 = (R>20 & R<=25);

back = (ball1+ball2+ball3+ball4+ball5 ~=1); figure(1), imagesc(back)

%truth = zeros(N,N)+10; %units of degrees kelvin

truth = ball1*1600+ball2*1500+ball3*1200+ball4*1000+ball5*800+ back ...

.* normrnd(300,10,N,N); %units of degrees kelvin

figure(1), imagesc(truth), colorbar(’vert’), axis square xy

bins = 15;

int = (5-2)/bins;

lamda = 2:int:5-int; % My selected wavelength range

bin_low_cent_high = [lamda’ lamda’+int/2 lamda’+int];

% Gives the spectral photon radiance [photons/sec - cm^2 - sr - um] as a

% sum of "sub_lamda" sub-bin areas in each wavelength bin.

sub_lamda = 100;

for index = 1:bins

lamda_base = lamda(index):int/sub_lamda:lamda(index) + int - int/sub_lamda;

temporary = zeros(N,N);

for count = 1:sub_lamda

temporary = temporary + (2 * c * 1e14) ./ (lamda_base(count)^4 .* ..

(exp(h*c./(lamda_base(count)*1e-6*kB.*truth)) - 1)) * int/sub_lamda;
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end

rad_p(index,:,:) = temporary;

end

%Projected area of a square pixel at 3258m entered in metres^2 converted to centimetres^2

A1 = 3.258^2 * 1000;

D = .1; % diameter of the telescope in metres;

Dist = 3258; % Distance for fireball to sensor in metres

SR = D*D*pi/(4*Dist); % Solid angle subtended by sensor to fireball range

dt=.001; % Integration time in seconds of the CCD camera

%dt = .01;

for index = 1:bins

photons(index,:,:) = squeeze(rad_p(index,:,:)) * dt * A1 * SR;

end

% This loop creates x & y vector sums of the source photons with no atmospheric attenuation

for k = 1:bins

photons_x(k,:) = sum(squeeze(photons(k,:,:)));

photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end

% This loop adds in atmospheric attenuation

for index = 1:bins, photons(index,:,:) = photons(index,:,:) * atmo_av_trans(index); end

photons = round(photons); %Rounds #photons to an integer

%whos

toc

C.2.0.7 make fireball spots atm 2. This file generates the hyperspectral data cubes
for the hot-spots fireball.

clear all

tic

% Fundamental constants.

c = 299792458;

h = 6.6260755e-34;

kB = 1.380658e-23;

load Atmo_data_15

%load Atmo_data_30

N = 100; % number of pixels along a side of the true image

x = -N/2:N/2-1;

[X,Y] = meshgrid(x,x);

R = sqrt(X.^2 +Y.^2);

ball1 = sqrt((X-10).^2 +(Y-10).^2); ball1 = (ball1<=4);

ball2 = sqrt((X-10).^2 +(Y+10).^2); ball2 = (ball2<=6);

ball3 = sqrt((X+10).^2 +(Y-10).^2); ball3 = (ball3<=8);

ball4 = sqrt((X+10).^2 +(Y+10).^2); ball4 = (ball4<=10);

ball5 = (R<=25) - ball1 - ball2 - ball3 - ball4;

back = (R >25); figure(1), imagesc(back)

%truth = zeros(N,N)+10; %units of degrees kelvin
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truth = ball1*1600+ball2*1500+ball3*1200+ball4*1000+ball5*600+back ...

.* normrnd(300,10,N,N); %units of degrees kelvin

figure(1), imagesc(truth), colorbar(’vert’), axis square xy

bins = 15;

int = (5-2)/bins;

lamda = 2:int:5-int; % My selected wavelength range

bin_low_cent_high = [lamda’ lamda’+int/2 lamda’+int];

% Gives the spectral photon radiance [photons/sec - cm^2 - sr - um] as a

% sum of "sub_lamda" sub-bin areas in each wavelength bin.

sub_lamda = 100;

for index = 1:bins

lamda_base = lamda(index):int/sub_lamda:lamda(index) + int - int/sub_lamda;

temporary = zeros(N,N);

for count = 1:sub_lamda

temporary = temporary + (2 * c * 1e14) ./ (lamda_base(count)^4 .* ...

(exp(h*c./(lamda_base(count)*1e-6*kB.*truth)) - 1)) * int/sub_lamda;

end

rad_p(index,:,:) = temporary;

end

%Projected area of a square pixel at 3258m entered in metres^2 converted to centimetres^2

A1 = 3.258^2 * 1000;

D = .1; % diameter of the telescope in metres;

Dist = 3258; % Distance for fireball to sensor in metres

SR = D*D*pi/(4*Dist); % Solid angle subtended by sensor to fireball range

dt=.001; % Integration time in seconds of the CCD camera

%dt = .01;

for index = 1:bins

photons(index,:,:) = squeeze(rad_p(index,:,:)) * dt * A1 * SR;

end

% This loop creates x & y vector sums of the source photons with no atmospheric attenuation

for k = 1:bins

photons_x(k,:) = sum(squeeze(photons(k,:,:)));

photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end

% This loop adds in atmospheric attenuation

for index = 1:bins, photons(index,:,:) = photons(index,:,:) * atmo_av_trans(index); end

photons = round(photons); %Rounds #photons to an integer

%whos

toc
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C.2.0.8 make fireball atm series. This file generates the hyperspectral data cubes
for the evolving fireballs.

clear all

tic

% Fundamental constants.

c = 299792458;

h = 6.6260755e-34;

kB = 1.380658e-23;

load Atmo_data_15

N = 100; % number of pixels along a side of the true image

x = -N/2:N/2-1;

[X,Y] = meshgrid(x,x);

R = sqrt(X.^2 +Y.^2);

ball = (R<=5); figure(1), subplot(111), imagesc(ball)

back = (ball~=1); figure(1), imagesc(back)

%truth = zeros(N,N)+10; %units of degrees kelvin

%truth = ball * 1600 + back .* normrnd(300,10,N,N); %units of degrees kelvin

%truth = ball * 1500 + back .* normrnd(300,10,N,N); %units of degrees kelvin

%truth = ball * 1400 + back .* normrnd(300,10,N,N); %units of degrees kelvin

%truth = ball * 1300 + back .* normrnd(300,10,N,N); %units of degrees kelvin

%truth = ball * 1200 + back .* normrnd(300,10,N,N); %units of degrees kelvin

truth = ball * 1000 + back .* normrnd(300,10,N,N); %units of degrees kelvin

%truth = ball * 400 + back .* normrnd(300,10,N,N); %units of degrees kelvin

figure(1), imagesc(truth), colorbar(’vert’), axis square xy

bins = 15;

int = (5-2)/bins;

lamda = 2:int:5-int; % My selected wavelength range

bin_low_cent_high = [lamda’ lamda’+int/2 lamda’+int];

% Gives the spectral photon radiance [photons/sec - cm^2 - sr - um] as a

% sum of "sub_lamda" sub-bin areas in each wavelength bin.

sub_lamda = 100;

for index = 1:bins

lamda_base = lamda(index):int/sub_lamda:lamda(index) + int - int/sub_lamda;

temporary = zeros(N,N);

for count = 1:sub_lamda

temporary = temporary + (2 * c * 1e14) ./ (lamda_base(count)^4 .*...

(exp(h*c./(lamda_base(count)*1e-6*kB.*truth)) - 1)) * int/sub_lamda;

end

rad_p(index,:,:) = temporary;

end

%Projected area of a square pixel at 3258m entered in metres^2 converted to centimetres^2

A1 = 3.258^2 * 1000;

D = .1; % diameter of the telescope in metres;

Dist = 3258; % Distance for fireball to sensor in metres

SR = D*D*pi/(4*Dist); % Solid angle subtended by sensor to fireball range

dt=.001; % Integration time in seconds of the CCD camera

%dt = .01;
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for index = 1:bins

photons(index,:,:) = squeeze(rad_p(index,:,:)) * dt * A1 * SR;

end

% This loop creates x & y vector sums of the source photons with no atmospheric attenuation

for k = 1:bins

photons_x(k,:) = sum(squeeze(photons(k,:,:)));

photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end

% This loop adds in atmospheric attenuation

%for index = 1:bins, photons(index,:,:) = photons(index,:,:) * atmo_av_trans(index); end

photons = round(photons); %Rounds #photons to an integer

%whos

toc

C.3 Matlabr Files For Generating CTIS Detector Images

C.3.0.1 At Dectr 15 bins. This file generates the CTIS detector images for the
static test cases.

clear all

tic

DS = 256; %256 Pixels in detector side

load bin_data_15

%load bin_data_50

rot_angle = length(bin_low_cent_high); %15 %30; % Number of rotation angles

% also equal to number of wavelength bins

Shifts = Prism_rays_3(bin_low_cent_high(:,2));

Prism_stops = (0: 2*pi / rot_angle : 2*pi - 2*pi / rot_angle);

r = Shifts(:,2) * 1e4; % Scale factor on Zernike coefficient

% for 100um pixel pitch use 1/100e-6 = 1e4

% for 66.67um pixel pitch use 1/66.67e-6 = 1.5e4

for count = 1 : rot_angle

m(:,count) = r * cos(Prism_stops(count)); % Zernike 2 coefficient

n(:,count) = r * sin(Prism_stops(count)); % Zernike 3 coefficient

end

m = round(m)+DS/2+1;

n = round(n)+DS/2+1;

%PSF = PSFs_RS_fn(bin_low_cent_high(:,2));

load PSF_unshifted_15

%load PSF_unshifted_50

% Loads in spectral star data for 15 bins

%load(’...Final Code\Binary Star\photons_bin_star_15’)

%load(’...Final Code\Binary Star\photons_bin_star_15_atm’)

%load(’...Final Code\Binary Star\photons_bin_star_50’)

%load(’...Final Code\Binary Star\photons_bin_star_50_atm’)

%load(’...Final Code\Monochromatic Bars\photons_slab1s’)
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%load(’...Final Code\Monochromatic Bars\photons_slab2s’)

%load(’...Final Code\Monochromatic Bars\photons_slab1b’)

load(’...Final Code\Monochromatic Bars\photons_slab2b’)

%load(’...Final Code\Big Numbers\photons_numbers’)

%load(’...Final Code\Big Numbers\photons_numbers_atm’)

%load(’...Final Code\Big Numbers\photons_numbers_small’)

%load(’...Final Code\Fireball 1\photons_fball4K_15’)

%load(’...Final Code\Fireball 1\photons_fball4K_15_atm’)

%load(’...Final Code\Fireball 1\photons_fball10K_15’)

%load(’...Final Code\Fireball 1\photons_fball10K_15_atm’)

%load(’...Final Code\Fireball 1\photons_fball16K_15’)

%load(’...Final Code\Fireball 1\photons_fball16K_15_atm’)

%load(’...Final Code\Fireball Rings\photons_fball_rings1_15’)

%load(’...Final Code\Fireball Rings\photons_fball_rings1_15_atm’)

%load(’...Final Code\Fireball Spots\photons_fball_spots1_15’)

%load(’...Final Code\Fireball Spots\photons_fball_spots1_15_atm’)

%%%% Caculates the image at detector from binary stars

for angle = 1 : rot_angle;

dectr_back = zeros(DS);

m1 = m(:,angle);

n1 = n(:,angle);

for shift = 1 : rot_angle;

mm = m1(shift)-60:m1(shift)+59; nn = n1(shift)-60:n1(shift)+59; % 100 X 100 image

% mm = m1(shift)-20:m1(shift)+19; nn = n1(shift)-20:n1(shift)+19; % 20 X 20 image

dectr_back(mm,nn) = ...

conv2(squeeze(PSF(shift,:,:)),squeeze(photons(shift,:,:))) + dectr_back(mm,nn);

end

at_dectr(angle,:,:) = dectr_back; % Image at the detector at each rotation angle

% Image at the detector at each rotation angle with Poisson noise

% at_dectr(angle,:,:) = poissrnd(dectr_back);

end

% Calculates vector image at detector

for k = 1:rot_angle

at_dectr_x(k,:) = sum(squeeze(at_dectr(k,:,:)));

at_dectr_y(k,:) = sum(squeeze(at_dectr(k,:,:))’);

% photons_x(k,:) = sum(squeeze(photons(k,:,:)));

% photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end

whos

toc

%figure(1), subplot(111), for k = 1:rot_angle, temp = squeeze(at_dectr(k,:,:));

%imagesc(temp), colorbar(’vert’), axis square xy, pause(.2), end

%figure(2), subplot(111), for k = 1:rot_angle, temp = at_dectr_x(k,:);

%plot(temp), axis([1 DS 0 max(temp)]), pause(.2), end
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C.3.0.2 At Dectr evolve 15 bins.m. This file generates the CTIS detector images
for the evolving fireball test cases.

clear all

tic

DS = 256; %256 Pixels in detector side

load bin_data_15

%load bin_data_50

rot_angle = length(bin_low_cent_high); %15 %30; % Number of rotation angles

% also equal to number of wavelength bins

Shifts = Prism_rays_3(bin_low_cent_high(:,2));

Prism_stops = (0: 2*pi / rot_angle : 2*pi - 2*pi / rot_angle);

r = Shifts(:,2) * 1e4; % Scale factor on Zernike coefficient

% for 100um pixel pitch use 1/100e-6 = 1e4

% for 66.67um pixel pitch use 1/66.67e-6 = 1.5e4

for count = 1 : rot_angle

m(:,count) = r * cos(Prism_stops(count)); % Zernike 2 coefficient

n(:,count) = r * sin(Prism_stops(count)); % Zernike 3 coefficient

end

m = round(m)+DS/2+1;

n = round(n)+DS/2+1;

%PSF = PSFs_RS_fn(bin_low_cent_high(:,2));

load PSF_unshifted_15

%load PSF_unshifted_50

% Loads in spectral star data for 15 bins

load(’...Final Code\Fireball Evolve\photons_fball16K_15’); photons16 = photons;

load(’...Final Code\Fireball Evolve\photons_fball15K_15’); photons15 = photons;

load(’...Final Code\Fireball Evolve\photons_fball14K_15’); photons14 = photons;

load(’...Final Code\Fireball Evolve\photons_fball13K_15’); photons13 = photons;

load(’...Final Code\Fireball Evolve\photons_fball12K_15’); photons12 = photons;

load(’...Final Code\Fireball Evolve\photons_fball10K_15’); photons10 = photons;

load(’...Final Code\Fireball Evolve\photons_fball4K_15’); photons4 = photons;

clear photons

%%%% Caculates the image at detector from binary stars

for angle = 1 : rot_angle;

% if (angle >=1 & angle <8)

% photons = photons13;

% else % Code for two fireball temperature detector image

% photons = photons16;

% end

if angle >=1 & angle <=5

photons = photons16;

elseif angle >= 6 & angle <=10

photons = photons10; % Code for three fireball temperature detector image

elseif angle >= 11

photons = photons4;

end

dectr_back = zeros(DS);

m1 = m(:,angle);
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n1 = n(:,angle);

for shift = 1 : rot_angle;

mm = m1(shift)-60:m1(shift)+59; nn = n1(shift)-60:n1(shift)+59; % 100 X 100 image

% mm = m1(shift)-20:m1(shift)+19; nn = n1(shift)-20:n1(shift)+19; % 20 X 20 image

dectr_back(mm,nn) = ...

conv2(squeeze(PSF(shift,:,:)),squeeze(photons(shift,:,:))) + dectr_back(mm,nn);

end

at_dectr(angle,:,:) = dectr_back; % Image at the detector at each rotation angle

% Image at the detector at each rotation angle with Poisson noise

% at_dectr(angle,:,:) = poissrnd(dectr_back);

end

% Calculates vector image at detector

for k = 1:rot_angle

at_dectr_x(k,:) = sum(squeeze(at_dectr(k,:,:)));

at_dectr_y(k,:) = sum(squeeze(at_dectr(k,:,:))’);

% photons_x(k,:) = sum(squeeze(photons(k,:,:)));

% photons_y(k,:) = sum(squeeze(photons(k,:,:))’);

end

%whos

toc

%figure(1), subplot(111), for k = 1:rot_angle, temp = squeeze(at_dectr(k,:,:));

%imagesc(temp), colorbar(’vert’), axis square xy, pause(.2), end

%figure(2), subplot(111), for k = 1:rot_angle, temp = at_dectr_x(k,:); plot(temp),

%axis([1 DS 0 max(temp)]), pause(.2), end
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C.4 Matlabr Files For 2D And Vector Reconstruction Algorithms

C.4.0.1 Recon 2D no atm stars. This file shows an example of the implementation
of the 2D reconstruction algorithm.

clear all;

load(’...Final Code\BinaryStar\at_dectr_bin_star_15’)

load(’...Final Code\Binary Star\photons_bin_star_15’)

load Shifts_15_1o5e

load PSF_unshifted_15

load bin_data_15

rot_angle = 15;

DS = 256;

data_cube = at_dectr;

recon = ones(rot_angle,DS,DS);

for iters = 1:100

tic

est_data1 = zeros(rot_angle,DS,DS);

for angle = 1:rot_angle;

load([’...Final Code\OTF15 no fftshift\otf_dectrA_’ num2str(angle)])

temp6 = zeros(DS);

for shift = 1:rot_angle;

temp4 = (fft2(squeeze(recon(shift,:,:))));

temp5 = temp4 .* squeeze(otf_dectr(shift,:,:));

temp6 = real(ifft2((temp5))) + temp6;

end

est_data1(angle,:,:) = (temp6);

clear otf_dectr

end

differ = sum(sum(sum(abs(est_data1-data_cube))))

MSE(iters) = differ;

map = (est_data1==0);

est_data1 = (1-map) .* data_cube ./ (est_data1 + map) + map;

for shift = 1:rot_angle;

load([’...Final Code\OTF15 no fftshift\otf_dectrB_’ num2str(shift)])

temp1 = zeros(DS);

for angle = 1:rot_angle;

temp2 = (fft2(squeeze(est_data1(angle,:,:))));

temp3 = temp2 .* conj(squeeze(otf_dectr(angle,:,:)));

temp1 = real(ifft2((temp3))) + temp1;

end

est_data2(shift,:,:) = (temp1);

clear otf_dectr

end

recon = recon .* est_data2 / rot_angle;

count = iters

it_time = toc
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end

for shift = 1:15

recon(shift,:,:) = fftshift(squeeze(recon(shift,:,:)));

end

for k = 1:15;

temp =abs(squeeze(recon(k,:,:)));

photon_temp = squeeze(photons(k,:,:));

star1_r(k) = round(sum(sum(temp(:,1:128))));

star2_r(k) = round(sum(sum(temp(:,129:256))));

star1(k) = round(sum(sum(photon_temp(:,1:10))));

star2(k) = round(sum(sum(photon_temp(:,11:20))));

figure(2), subplot(111),

imagesc(temp), axis([119 138 119 138]), axis square, axis xy

colorbar(’vert’), title([’bin = ’ num2str(k)]), pause(.01)

end

figure(1)

subplot(211), plot(bin_low_cent_high(:,2), star1,’r+’,bin_low_cent_high(:,2), star1_r,’bo’),

legend(’Original Star 1 @ T = 10000K’, ’Reconstructed Star 1’)

xlabel(’Wavelength - \mum’), ylabel(’Number of Photons’)

subplot(212), plot(bin_low_cent_high(:,2), star2,’rx’,bin_low_cent_high(:,2), star2_r,’gd’)

legend(’Original Star 2 @ T = 5000K’,’Reconstructed Star 2’)

xlabel(’Wavelength - \mum’), ylabel(’Number of Photons’)

C = [star1_r’ star1’ star1_r’./star1’ star2_r’ star2’ star2_r’./star2’]

whos

toc

C.4.0.2 Recon 2D atm stars. This file shows an example of the implementation of
the 2D atmospheric reconstruction algorithm.

clear all;

load(’...Final Code\Binary Star\at_dectr_bin_star_15_atm’)

load(’...Final Code\Binary Star\photons_bin_star_15’)

load Atmo_data_15

atmo = atmo_av_trans;

T = sum(atmo);

load Shifts_15_1o5e

load PSF_unshifted_15

load bin_data_15

rot_angle = 15;

DS = 256;

data_cube = at_dectr;

recon = ones(rot_angle,DS,DS);

for iters = 1:100

tic

est_data1 = zeros(rot_angle,DS,DS);
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for angle = 1:rot_angle;

load([’...Final Code\OTF15 no fftshift\otf_dectrA_’ num2str(angle)])

temp6 = zeros(DS);

for shift = 1:rot_angle;

temp4 = (fft2(squeeze(recon(shift,:,:))));

temp5 = temp4 .* squeeze(otf_dectr(shift,:,:)) * atmo(shift);

temp6 = real(ifft2((temp5))) + temp6;

end

est_data1(angle,:,:) = (temp6);

clear otf_dectr

end

differ = sum(sum(sum(abs(est_data1-data_cube))))

MSE(iters) = differ;

map = (est_data1==0);

est_data1 = (1-map) .* data_cube ./ (est_data1 + map) + map;

for shift = 1:rot_angle;

load([’...Final Code\OTF15 no fftshift\otf_dectrB_’ num2str(shift)])

temp1 = zeros(DS);

for angle = 1:rot_angle;

temp2 = (fft2(squeeze(est_data1(angle,:,:))));

temp3 = temp2 .* conj(squeeze(otf_dectr(angle,:,:))) * atmo(angle);

temp1 = real(ifft2((temp3))) + temp1;

end

est_data2(shift,:,:) = (temp1);

clear otf_dectr

end

recon = recon .* est_data2 / T;

count = iters

it_time = toc

end

for shift = 1:15

recon(shift,:,:) = fftshift(squeeze(recon(shift,:,:)));

end

for k = 1:15;

temp =abs(squeeze(recon(k,:,:)));

photon_temp = squeeze(photons(k,:,:));

star1_r(k) = round(sum(sum(temp(:,1:128))));

star2_r(k) = round(sum(sum(temp(:,129:256))));

star1(k) = round(sum(sum(photon_temp(:,1:10))));

star2(k) = round(sum(sum(photon_temp(:,11:20))));

figure(2), subplot(111),

imagesc(temp), axis([119 138 119 138]), axis square, axis xy

colorbar(’vert’), title([’bin = ’ num2str(k)]), pause(.01)

end

figure(1)

subplot(211), plot(bin_low_cent_high(:,2), star1,’r+’,bin_low_cent_high(:,2), star1_r,’bo’),

legend(’Original Star 1 @ T = 10000K’, ’Reconstructed Star 1’)

xlabel(’Wavelength - \mum’), ylabel(’Number of Photons’)
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subplot(212), plot(bin_low_cent_high(:,2), star2,’rx’,bin_low_cent_high(:,2), star2_r,’gd’)

legend(’Original Star 2 @ T = 5000K’,’Reconstructed Star 2’)

xlabel(’Wavelength - \mum’), ylabel(’Number of Photons’)

C = [star1_r’ star1’ star1_r’./star1’ star2_r’ star2’ star2_r’./star2’]

whos

toc

C.4.0.3 Recon vector big scene. This file shows an example of the implementation
of the vector reconstruction algorithm.

clear all

tic

load bin_data_15

%load(’...Final Code\Monochromatic Bars\at_dectr_vectors_slab1s_15’)

%load(’...Final Code\Monochromatic Bars\at_dectr_vectors_slab2s_15’)

%load(’...Final Code\Monochromatic Bars\at_dectr_all_slab1s_15’)

%load(’...Final Code\Monochromatic Bars\at_dectr_all_slab1s_15_noisy’)

%load(’...Final Code\Monochromatic Bars\at_dectr_all_slab2s_15’)

load(’...Final Code\Monochromatic Bars\at_dectr_all_slab2s_15_noisy’)

load OTF15vectors_1o5e

%load(’...Final Code\Monochromatic Bars\at_dectr_vectors_slab1b_15’)

%load(’...Final Code\Monochromatic Bars\at_dectr_vectors_slab2b_15’)

%load(’...Final Code\Monochromatic Bars\at_dectr_all_slab1b_15’)

%load(’...Final Code\Monochromatic Bars\at_dectr_all_slab1b_15_noisy’)

%load(’...Final Code\Monochromatic Bars\at_dectr_all_slab2b_15’)

%load(’...Final Code\Monochromatic Bars\at_dectr_all_slab2b_15_noisy’)

%load OTF15vectors_1e

rot_angle = length(bin_low_cent_high);

DS = 256;

data_cube = at_dectr_x;

%data_cube = at_dectr_y;

recon = ones(rot_angle,DS);

for iters = 1:1000

est_data1 = zeros(rot_angle,DS);

for angle = 1:rot_angle;

temp6 = zeros(1,DS);

for shift = 1:rot_angle;

temp4 = fftshift(fft(recon(shift,:)));

temp5 = temp4 .* conj(squeeze(otf_dectrA_x(shift,angle,:))’);

% temp5 = temp4 .* conj(squeeze(otf_dectrA_y(shift,angle,:))’);

temp6 = real(ifft(ifftshift(temp5))) + temp6;

end

est_data1(angle,:) = ifftshift(temp6);

end

differ = sum(sum(abs(est_data1-data_cube)))

MSE(iters) = differ;

map = (est_data1==0);
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est_data1 = (1-map) .* data_cube ./ (est_data1 + map) + map;

for shift = 1:rot_angle;

temp1 = zeros(1,DS);

for angle = 1:rot_angle;

temp2 = fftshift(fft(est_data1(angle,:)));

temp3 = temp2 .* ((squeeze(otf_dectrB_x(shift,angle,:))’));

% temp3 = temp2 .* ((squeeze(otf_dectrB_y(shift,angle,:))’));

temp1 = real(ifft(ifftshift(temp3))) + temp1;

end

est_data2(shift,:) = ifftshift(temp1);

end

recon = recon .* est_data2 / rot_angle;

count = iters

end

slab_r = round(sum(recon’));

slab = round(sum(photons_x’));

C = [slab_r; slab; slab_r-slab]’

h = 1;

for k = [1 4 8 12 15]

figure(3), subplot(3,2,h), temp = photons_x(k,:);

plot(temp), axis([1 20 0 max(temp)+2]) ,

title([’Original Vector @ \lambda = ’ num2str(bin_low_cent_high(k,2)) ’ \mum’])

ylabel(’Number of Photons’)

figure(2), subplot(3,2,h), temp1 = recon(k,:);

plot(temp1), axis([119 138 0 max(temp1)+2]),

title([’Reconstructed Vector @ \lambda = ’ num2str(bin_low_cent_high(k,2)) ’ \mum’])

ylabel(’Number of Photons’)

h = h + 1;

end

figure(1)

subplot(111), plot(bin_low_cent_high(:,2), slab,’r+’,bin_low_cent_high(:,2), slab_r,’bo’),

legend(’Original Bar’, ’Reconstructed Bar’)

xlabel(’Wavelength - \mum’), ylabel(’Number of Photons’)

%whos

toc
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C.4.0.4 Recon vector 15 atm combo. This file shows an example of the implemen-
tation of the vector atmospheric reconstruction algorithms.

clear all;

tic

%load(’...Final Code\Fireball 1\at_dectr_fball4K_15_atm’),

%load(’...Final Code\Fireball 1\at_dectr_fball10K_15_atm’),

%load(’...Final Code\Fireball 1\at_dectr_fball16K_15_atm’),

%load(’...Final Code\Fireball Rings\at_dectr_fball_rings1_15_atm’),

load(’...Final Code\Fireball Spots\at_dectr_fball_spots1_15_atm’)

load bin_data_15

load OTF15vectors_1e

load Atmo_data_15

atmo = atmo_av_trans; T = sum(atmo);

rot_angle = length(atmo_av_trans);

DS = 256;

data_cube = at_dectr_x;

%data_cube = at_dectr_y;

recon = ones(rot_angle,DS);

recone = ones(rot_angle,DS);

for iters = 1:1000

est_data1 = zeros(rot_angle,DS);

est_data1e = zeros(rot_angle,DS);

for angle = 1:rot_angle;

temp6 = zeros(1,DS);

temp6e = zeros(1,DS);

for shift = 1:rot_angle;

temp4 = fftshift(fft(recon(shift,:)));

temp5 = temp4 .* conj(squeeze(otf_dectrA_x(shift,angle,:))’);

% temp5 = temp4 .* conj(squeeze(otf_dectrA_y(shift,angle,:))’);

temp6 = real(ifft(ifftshift(temp5))) + temp6;

temp4e = fftshift(fft(recone(shift,:)));

temp5e = temp4e .* conj(squeeze(otf_dectrA_x(shift,angle,:))’) * atmo(shift) ;

% temp5e = temp4e .* conj(squeeze(otf_dectrA_y(shift,angle,:))’);

temp6e = real(ifft(ifftshift(temp5e))) + temp6e;

end

est_data1(angle,:) = ifftshift(temp6);

est_data1e(angle,:) = ifftshift(temp6e);

end

differ = [sum(sum(abs(est_data1-data_cube))) sum(sum(abs(est_data1e-data_cube)))]

MSE(iters,:) = differ;

map = (est_data1==0);

est_data1 = (1-map) .* data_cube ./ (est_data1 + map) + map;

map = (est_data1e==0);

est_data1e = (1-map) .* data_cube ./ (est_data1e + map) + map;

for shift = 1:rot_angle;

temp1 = zeros(1,DS);
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temp1e = zeros(1,DS);

for angle = 1:rot_angle;

temp2 = fftshift(fft(est_data1(angle,:)));

temp3 = temp2 .* ((squeeze(otf_dectrB_x(shift,angle,:))’));

% temp3 = temp2 .* ((squeeze(otf_dectrB_y(shift,angle,:))’));

temp1 = real(ifft(ifftshift(temp3))) + temp1;

temp2e = fftshift(fft(est_data1e(angle,:)));

temp3e = temp2e .* ((squeeze(otf_dectrB_x(shift,angle,:))’)) * atmo(angle);

% temp3e = temp2e .* ((squeeze(otf_dectrB_y(shift,angle,:))’));

temp1e = real(ifft(ifftshift(temp3e))) + temp1e;

end

est_data2(shift,:) = ifftshift(temp1);

est_data2e(shift,:) = ifftshift(temp1e);

end

recon = recon .* est_data2 / rot_angle;

recone = recone .* est_data2e / T;

count = iters

end

E = round(sum(recon’)’);

for k = 1:rot_angle

recon(k,:,:) = recon(k,:,:) / atmo_av_trans(k);

% photons_x(k,:) = photons_x(k,:) / atmo_av_trans(k);

% photons_y(k,:) = photons_y(k,:) / atmo_av_trans(k);

end

A = round(sum(recon’)’);

B = sum(photons_x’)’;

D = round(sum(recone’)’);

C = [B A A./B D D./B]

figure(1)

subplot(311), plot(bin_low_cent_high(:,2),B’,’r+’,bin_low_cent_high(:,2),E’,’bo’)

subplot(312), plot(bin_low_cent_high(:,2),B’,’r+’,bin_low_cent_high(:,2),A’,’bo’)

subplot(313), plot(bin_low_cent_high(:,2),B’,’r+’,bin_low_cent_high(:,2),D’,’bo’)

%whos

toc
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C.5 Miscellaneous CTIS Matlabr Files

C.5.0.1 Index inter 3. This file interpolates the spectral refactive indices of the
DVP optical materials.

function [Wave_Index] = Index_inter_3(bin_cent)

% Returns interpolated refractive indices for "bins"

% number of wavelength bins between 2 to 5 microns

%clear all

%load bin_data_15

%bin_cent = bin_low_cent_high(:,2);

lam3 = 2:0.5:5;

n3 = [1.37875 1.37327 1.3666 1.35868 1.34942 1.33875 1.32661];

lam4 = [1.97009 2.1526 2.32542 2.5766 2.6738 3.2434 3.422 5.138];

n4 = [1.46470 1.46412 1.46356 1.46271 1.46237 1.46017 1.45941 1.45014];

grad3 = diff(n3) / 0.5;

grad4 = diff(n4) ./ diff(lam4);

b3 = n3(1:6) - grad3 .* lam3(1:6);

b4 = n4(1:7) - grad4 .* lam4(1:7);

for i = 1 :length(bin_cent)

j = 1;

check = 0;

while check == 0;

if (bin_cent(i) >= lam3(j) & bin_cent(i) < lam3(j+1))

n3_lamda(i) = grad3(j) * bin_cent(i) + b3(j);

check = 1;

else

j = j + 1;

end

end

end

for i = 1 :length(bin_cent)

j = 1;

check = 0;

while check == 0;

if (bin_cent(i) >= lam4(j) & bin_cent(i) < lam4(j+1))

n4_lamda(i) = grad4(j) * bin_cent(i) + b4(j);

check = 1;

else

j = j + 1;

end

end

end

Wave_Index = [bin_cent n3_lamda’ n4_lamda’];

%figure(1), subplot(211), plot(lam3,n3,’r*’,bin_cent,n3_lamda,’b.’), grid on

%axis([1.75 5.25 1.325 1.382])

%xlabel(’Wavelength (\mum)’), ylabel(’Refractive Index (n_2)’)

%title(’Spectral Refractive Index for LiF’)
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%legend(’Spectral refractive index’,’Interpolated refractive index’,3)

%subplot(212), plot(lam4,n4,’r*’,bin_cent,n4_lamda,’b.’), grid on

%axis([1.75 5.25 1.45 1.465])

%xlabel(’Wavelength (\mum)’), ylabel(’Refractive Index (n_3)’)

%title(’Spectral Refractive Index for BaF_2’)

%legend(’Spectral refractive index’,’Interpolated refractive index’,3)

%whos

C.5.0.2 Make OTF dectr no fftshift. This file calculates the 2D OTF of the mod-
elled CTIS.

clear all tic

%load Shifts_15_1o5e

load Shifts_15_1e

load PSF_unshifted_15

rot_angle = 15;

DS = 256;

for angle = 1:rot_angle;

m1 = m(:,angle);

n1 = n(:,angle);

for shift = 1 : rot_angle;

mm1 = m1(shift)-10:m1(shift)+10;

nn1 = n1(shift)-10:n1(shift)+10;

psf_back = zeros(DS);

psf_back(mm1,nn1) = squeeze(PSF(shift,:,:)) + psf_back(mm1,nn1);

otf_dectr(shift,:,:) = (fft2(psf_back));

end

save([’...Final Code\OTF15big no fftshift\otf_dectrA_’ num2str(angle)],’otf_dectr’)

angle

end

for shift = 1:rot_angle;

m1 = m(shift,:);

n1 = n(shift,:);

for angle = 1 : rot_angle;

mm1 = m1(angle)-10:m1(angle)+10;

nn1 = n1(angle)-10:n1(angle)+10;

psf_back = zeros(DS);

psf_back(mm1,nn1) = squeeze(PSF(shift,:,:)) + psf_back(mm1,nn1);

otf_dectr(angle,:,:) = (fft2(psf_back));

end

save([’...Final Code\OTF15big no fftshift\otf_dectrB_’ num2str(shift)],’otf_dectr’)

shift

end

toc
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C.5.0.3 Make OTF dectr vector. This file calculates the 1D OTF of the modelled
CTIS.

clear all

tic

load Shifts_15_1e, load PSF_unshifted_15

%load Shifts_15_1o5e, load PSF_unshifted_15

%load Shifts_30_1e, load PSF_unshifted_30

%load Shifts_50_1o5e, load PSF_unshifted_50

%load Shifts_50_1e, load PSF_unshifted_50

rot_angle = length(m);

DS = 256;

for angle = 1:rot_angle;

m1 = m(:,angle);

n1 = n(:,angle);

for shift = 1 : rot_angle;

mm1 = m1(shift)-10:m1(shift)+10;

nn1 = n1(shift)-10:n1(shift)+10;

psf_back = zeros(DS);

psf_back(mm1,nn1) = squeeze(PSF(shift,:,:)) + psf_back(mm1,nn1);

temp = fftshift(fft2(psf_back));

otf_dectrA_x(shift,angle,:) = temp(129,:);

otf_dectrA_y(shift,angle,:) = temp(:,129);

end

angle

end

for shift = 1:rot_angle;

m1 = m(shift,:);

n1 = n(shift,:);

for angle = 1 : rot_angle;

mm1 = m1(angle)-10:m1(angle)+10;

nn1 = n1(angle)-10:n1(angle)+10;

psf_back = zeros(DS);

psf_back(mm1,nn1) = squeeze(PSF(shift,:,:)) + psf_back(mm1,nn1);

temp = fftshift(fft2(psf_back));

otf_dectrB_x(shift,angle,:) = temp(129,:);

otf_dectrB_y(shift,angle,:) = temp(:,129);

end

shift

end

whos

toc
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C.5.0.4 Prism rays 3. This file calculates the radial spectral shifts produced by the
DVP.

function Shifts = Prism_rays_3(bin_cent)

%bins = 16;

a1 = pi/6;

a3 = (23+57/60)*pi/180;

%a3 = (23+38.5/60)*pi/180;

%a1 = (30.03)*pi/180;

%a3 = (23.96)*pi/180;

W_N = Index_inter_3(bin_cent);

n1 = 1;

n3 = W_N(:,2);

n4 = W_N(:,3);

Theta3 = asin(1./(2*n3)) - a1;

Theta4 = asin(n3./n4.*sin(Theta3)) + a3;

Theta5 = asin(n4./n1.*sin(Theta4)) - a3;

r = -0.5 * tan(Theta5);

%[Theta3 Theta4 Theta5 W_N(:,1)]

Shifts = [W_N(:,1) r];

%figure(10), stem(Shifts(:,1), Shifts(:,2)*1e3)

%axis([2 5 -7 5])

%axis([3.5 3.7 -1e-3 1e-3])

%title(’Radial Wavelength Shift using Geometric Optics for Prism’)

%xlabel(’Wavelength - \mum’), ylabel(’Shift - mm’)

%grid on, axis square

C.5.0.5 PSFs RS fn. This file calculates the unshifted spectral PSF for light at the
center wavelength of each bin.

function [I_PDs] = PSFs_RS_fn(bin_cent)

%clear all

%load bin_data_15

%bin_cent = bin_low_cent_high(:,2)

%format long g

Lens_radius = 0.05;

f = 0.5;

%lamda = 5e-6;

%bins = 15; % Number of wavelength bins

num_ap_samples = 11; % Must be odd!!. Assumes num_samples is same in both x & y direction

ends = (num_ap_samples - 1) / 2;

M1=[-ends:ends];

[m1,n1]=meshgrid(M1,M1);

num_det_samples = 21; % Must be odd!!. Assumes num_samples is same in both x & y direction

ends2 = (num_det_samples - 1) / 2;

M2=[-ends2:ends2];
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% Sample sizes in lens and detector

d_x_ap = (Lens_radius*2) / num_ap_samples ;

d_y_ap = d_x_ap ;

d_x_dt = 1.22e-6/(Lens_radius*2) * .25; %3.0500e-006;

%d_x_dt = 24e-6;

d_y_dt = d_x_dt;

% Calculation of point distances from lens to detector

count = 1;

for m2 = M2

for n2=M2

% R_Ds1(count,:,:) = sqrt((m1*d_x_ap - m2*d_x_dt).^2 + (n1*d_y_ap - n2*d_y_dt).^2 + f^2);

R_Ds1(count,:,:)= f + (m1*d_x_ap - m2*d_x_dt).^2/(2*f) + (n1*d_y_ap - n2*d_y_dt).^2/(2*f);

R_Ds2(count,:,:)= f^2 + (m1*d_x_ap - m2*d_x_dt).^2 + (n1*d_y_ap - n2*d_y_dt).^2;

count = count +1;

end

end

% Circular shape of lens

Lens_shape = ((m1*d_x_ap).^2+(n1*d_y_ap).^2) < Lens_radius^2;

% Divides 2 - 5 mircon band into "bins" number of wavelengths

%lamda = index_inter(bins-1); lamda = lamda(:,1) * 1e-6;

lamda = bin_cent * 1e-6;

for bigloop = 1 : length(bin_cent)

Lens_transform = exp(-j*pi*((m1*d_x_ap).^2+(n1*d_y_ap).^2)/(lamda(bigloop)*f));

U_out_lens = ones(num_ap_samples) .* Lens_shape .* Lens_transform;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Propagation from lens to detector

count = 1;

for m2 = M2

for n2=M2

r_ds1 = squeeze(R_Ds1(count,:,:));

r_ds2 = squeeze(R_Ds2(count,:,:));

count = count +1;

U_PDs(m2+ends2+1,n2+ends2+1)=sum(sum((1./r_ds2 .* U_out_lens.* ...

exp(j*2*pi*r_ds1./lamda(bigloop))) * ...

sinc(m2*d_x_dt*d_x_ap*pi/(lamda(bigloop)*f))*...

sinc(n2*d_y_dt*d_x_ap*pi/(lamda(bigloop)*f))*d_x_ap*d_y_ap));

end

end

U_PDs=U_PDs*f/(j*lamda(bigloop));

%U_PDs=U_PDs/(d_x_ap*j);

I_PDs(bigloop,:,:) = U_PDs.*conj(U_PDs)*d_x_dt;

end

% Normalises PSFs to each have sum of one

for count = 1 : length(bin_cent)

temp = squeeze(I_PDs(count,:,:));

I_PDs(count,:,:) = temp / sum(sum(temp));

end
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C.5.0.6 Pixel temperature fit. This file estimates the reconstructed temperatures of
the binary star test cases.

clear all, tic

% Atmospheric coefficient data

load(’...Final Code\Atmo_data_15’)

% Bin data

load(’...Final Code\bin_data_15’),

bins = length(bin_low_cent_high);

int = (5-2)/bins;

lamda =2:int:5-int;

% Test data

%load(’...Final Code\Binary Star\data_run_2D_bin_star_15_no_atm_100iters’)

%load(’...Final Code\Binary Star\data_run_2D_bin_star_15_atm_100iters’)

%load(’...Final Code\Binary Star\data_run_bin_star_15_no_atm_1000iters’)

load(’...Final Code\BinaryStar\data_run_bin_star_15_atm_1000iters’)

% Original photons

%star1 = photons(:,11,7);

%star2 = photons(:,11,14);

% Reconstructed photons 2D

%star1_r = recon(:,129,125); % Just looks at individual pixel locations for stars

%star2_r = recon(:,129,132);

%star1_r = sum(sum(recon(:,:,1:128),2),3); % Sums photons for all pixels for relevant stars 2D

%star2_r = sum(sum(recon(:,:,129:256),2),3);

% Reconstructed photons 1D

star1_r = recon(:,125); % Just looks at individual pixel locations for stars

star2_r = recon(:,132);

%star1_r = sum(recon(:,1:128),2); % Sums photons for all pixels for relevant stars 1D

%star2_r = sum(recon(:,129:256),2);

% Fundamental constants.

c = 299792458;

light_year = c * 60 * 60 * 24 * 365; % units of meters

h = 6.6260755e-34;

kB = 1.380658e-23;

% Star Parameters

sol_rad = 6.96e10; % Solar radii in units of centimeters % 1 solar radii = 6.96e8 meters

R1 = 2.5 ; % Radius of star 1 in units of Solar Radii;

R2 = 1.1 ; % Radius of star 2 in units of Solar Radii;

A1 = pi*(R1*sol_rad)^2; % Projected area of star1 in centimeters

A2 = pi*(R2*sol_rad)^2; % Projected area of star2 in centimeters

Dist = 50; % Light years

% Forward Optics Parameters

D = .1; % diameter of the telescope in meters;

SR1 = (D/2)^2*pi/(Dist * light_year)^2; % Solid angle subtended by star 1 to sensor

SR2 = (D/2)^2*pi/(Dist * light_year)^2; % Solid angle subtended by star 2 to sensor

% Detector Parameters

dt=.001; % Integration time in seconds of the CCD camera
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% Results for summed pixels

%star1_temp_guess = 10022; % 2D data with no Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4873;

%star1_temp_guess = 8324; % 2D data with no Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 3948; % Using single, peak pixel for each star from reconstruction

%star1_temp_guess = 9964; % 2D data with Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4804; %

%star1_temp_guess = 10015; % 2D data with Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4909; % Removal of low atmo coeff bins, ie, bin 4 and 12

%star1_temp_guess = 10015; % 1D data with no Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4920;

%star1_temp_guess = 9590; % 1D data with no Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4527; % Using single, peak pixel for each star from reconstruction

%star1_temp_guess = 10070; % 1D data with Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4666; %

%star1_temp_guess = 10010; % 1D data with Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4959; % Removal of low atmo coeff bins, ie, bin 4 and 12

% Results for single peak pixel

%star1_temp_guess = 8324; % 2D data with no Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 3948;

%star1_temp_guess = 8322; % 2D data with Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 3953;

%star1_temp_guess = 8473; % 2D data with Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4095; % Removal of low atmo coeff bins, ie, bin 4 and 12

%star1_temp_guess = 9590; % 1D data with no Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4527;

%star1_temp_guess = 9499; % 1D data with Atm : final resolution 1 degree Kelvin

%star2_temp_guess = 4369;

star1_temp_guess = 9624; % 1D data with Atm : final resolution 1 degree Kelvin

star2_temp_guess = 4642; % Removal of low atmo coeff bins, ie, bin 4 and 12

big_count = 1;

limit = 10;

interval = limit / 10

temp_range = -limit : interval : limit;

% Mask to remove low transmission bins from calculation

%mask = ones(15,1);

mask = [1 1 1 0 1 1 1 1 1 1 1 0 1 1 1]’;

for delta_temp = temp_range % start big for loop

truth_1 = star1_temp_guess + delta_temp; % Star 1 has a temperature of 5000 K

truth_2 = star2_temp_guess + delta_temp; % Star 2 has a temperature of 10000 K

truth = [truth_1 truth_2];

% Gives the spectral photon radiance [photons/sec - cm^2 - sr - um] as a

% sum of "sub_lamda" sub-bin areas in each wavelength bin.

sub_lamda = 100;

for index = 1:bins

lamda_base = lamda(index):int/sub_lamda:lamda(index) + int - int/sub_lamda;

temporary = 0;

for count = 1:sub_lamda

temporary = temporary + (2 * c * 1e14) ./ (lamda_base(count)^4 .* ...

(exp(h*c./(lamda_base(count)*1e-6*kB.*truth)) - 1)) * int/sub_lamda;
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end

rad_p(index,:) = temporary;

end

% Calculates photons at detector over integration time and solid angle

photons_1 = rad_p(:,1) * dt*A1*SR1;

photons_2 = rad_p(:,2) * dt*A2*SR2;

% Calculates error between reconstructed photons and photons produced from temperature guess

Error_Star1(big_count) = (sum(mask.*(photons_1 - star1_r).^2))/15;

Error_Star2(big_count) = (sum(mask.*(photons_2 - star2_r).^2))/15;

big_count = big_count+1;

end % end big for loop

% Calculates the minimum error, ie, best temperature fit to reconstructed photons

[aaa,bbb] = min(Error_Star1); [ccc,ddd] = min(Error_Star2);

Best_fit_star_1 = star1_temp_guess + temp_range(bbb)

Best_fit_star_2 = star2_temp_guess + temp_range(ddd)

figure(3),

subplot(211), plot(temp_range,Error_Star1), grid on, title(’Error in Star 1’)

subplot(212), plot(temp_range,Error_Star2), grid on, title(’Error in Star 2’)

toc

C.5.0.7 Pixel temperature fit 2D fball. This file estimates the reconstructed tem-
peratures in the 2D fireball test cases.

clear all, tic

% Atmospheric coefficient data

load(’...Final Code\Atmo_data_15’)

% Bin data

load(’...Final Code\bin_data_15’),

bins = length(bin_low_cent_high);

int = (5-2)/bins;

lamda = 2:int:5-int;

% Test data: Concentric Rings Fireball

load(’...Fireball Rings\data_run_2D_fball_rings1_15_100iters_atm’),

load(’...Final Code\Fireball Rings\photons_fball_rings1_15’)

reconAE = recon;

load(’...Final Code\Fireball Rings\data_run_2D_fball_rings1_15_100iters’)

% Test data: Hot-Spots Fireball

%load(’...Final Code\Fireball Spots\data_run_2D_fball_spots1_15_100iters_atm’)

%reconAE = recon;

%load(’...Final Code\Fireball Spots\data_run_2D_fball_spots1_15_100iters’)

% Reconstructed photons 2D: Concentric Rings Fireball

pix_loc = 145;

pixel1_r = recon(:,pix_loc,pix_loc); % Just looks at a single pixel location of fireball.

pixel1_rAE = reconAE(:,pix_loc,pix_loc);

% Reconstructed photons 2D: Hot-Spots Fireball

%pix_loc = [129 129]; % Fireball center 600K

%pix_loc = [119 119]; % Fireball 1000K

%pix_loc = [119 139]; % Fireball 1500K

%pix_loc = [139 119]; % Fireball 1200K
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%pix_loc = [139 139]; % Fireball 1600K

%pix_loc = [160 160]; % Background 300K

%pixel1_r = recon(:,pix_loc(1),pix_loc(2)); % Just looks at a single pixel location of fireball.

%pixel1_rAE = reconAE(:,pix_loc(1),pix_loc(2));

% Fundamental constants.

c = 299792458;

h = 6.6260755e-34;

kB = 1.380658e-23;

% Fireball Parameters

%Projected area of a square pixel at 3258m entered in metres^2 converted to centimetres^2

A = 3.258^2 * 1000;

Dist = 3258; % Distance for fireball to sensor in meters

% Forward Optics Parameters

D = .1; % diameter of the telescope in meters;

SR = D*D*pi/(4*Dist); % Solid angle subtended by sensor to fireball range

% Detector Parameters

dt=.001; % Integration time in seconds of the CCD camera

% Reconstructed temperatures for Concentric Rings fireball

%ball_temp_guess = 1605; % Concentric rings fireball (1600K) @ pixel location (129,129) 1602

%ball_temp_guess = 1499; % Concentric rings fireball (1500K) @ pixel location (135,135) 1499

%ball_temp_guess = 1200; % Concentric rings fireball (1200K) @ pixel location (138,138) 1203

%ball_temp_guess = 983; % Concentric rings fireball (1000K) @ pixel location (142,142) 981

ball_temp_guess = 823; % Concentric rings fireball (800K) @ pixel location (145,145) 819

%ball_temp_guess = 296; % Concentric rings fireball (300K) @ pixel location (160,160) 299

% Reconstructed temperatures for Hot-Spots fireball

%ball_temp_guess = 609; % Hot-Spots fireball (600K) @ pixel location (129,129) 571

%ball_temp_guess = 994; % Hot-Spots fireball (1000K) @ pixel location (119,119) 994

%ball_temp_guess = 1475; % Hot-Spots fireball (1500K) @ pixel location (129,139) 1476

%ball_temp_guess = 1179; % Hot-Spots fireball (1200K) @ pixel location (139,119) 1176

%ball_temp_guess = 1657; % Hot-Spots fireball (1600K) @ pixel location (139,139) 1665

%ball_temp_guess = 292; % Hot-Spots fireball (300K) @ pixel location (160,160) 299

big_count = 1;

limit = 10;

interval = limit / 10

temp_range = -limit : interval : limit;

% Mask to remove low transmission bins from calculation

mask = [1 1 1 0 1 1 1 1 1 1 1 0 1 1 1]’;

for delta_temp = temp_range % start big for loop

truth = (ball_temp_guess + delta_temp); %units of degrees kelvin

% Gives the spectral photon radiance [photons/sec - cm^2 - sr - um] as a

% sum of "sub_lamda" sub-bin areas in each wavelength bin.

sub_lamda = 100;

for index = 1:bins

lamda_base = lamda(index):int/sub_lamda:lamda(index) + int - int/sub_lamda;

temporary = 0;

for count = 1:sub_lamda
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temporary = temporary + (2 * c * 1e14) ./ (lamda_base(count)^4 .* ...

(exp(h*c./(lamda_base(count)*1e-6*kB.*truth)) - 1)) * int/sub_lamda;

end

rad_p(index,:) = temporary;

end

% Calculates photons at detector over integration time and solid angle

photons_1 = rad_p * dt*A*SR;

% Calculates error between reconstructed photons and photons produced from temperature guess

Error_Clean(big_count) = (sum(mask.*(photons_1 - pixel1_r).^2))/15;

Error_Atmo_Est(big_count) = (sum((photons_1 - pixel1_rAE ).^2 ))/15;

% Compensating low Atm coefficient bins by removal

Error_Atmo_Est_comp(big_count) = (sum(mask.*(photons_1 - pixel1_rAE).^2))/15;

big_count = big_count+1;

end % end big for loop

% Calculates the minimum error, ie, best temperature fit to reconstructed photons

[aaa,bbb] = min(Error_Clean);

[eee,fff] = min(Error_Atmo_Est);

[iii,jjj] = min(Error_Atmo_Est_comp);

Best_fit_clean = ball_temp_guess + temp_range(bbb)

Best_fit_Atmo_Est = ball_temp_guess + temp_range(fff)

Best_fit_Atmo_Est_comp = ball_temp_guess + temp_range(jjj)

figure(3),

subplot(311), plot(temp_range,Error_Clean), grid on

subplot(312), plot(temp_range,Error_Atmo_Est), grid on

subplot(313), plot(temp_range,Error_Atmo_Est_comp), grid on

toc

C.5.0.8 Pixel temperature fit uni fball. This file estimates the reconstructed tem-
peratures in the uniform fireball test cases.

clear all, tic

% Atmospheric coefficient data

load(’...Final Code\Atmo_data_15’)

% Bin data

load(’...Final Code\bin_data_15’),

bins = length(bin_low_cent_high);

int = (5-2)/bins;

lamda = 2:int:5-int;

% Test data: Static Fireballs

%load(’...Final Code\Fireball 1\data_run_1D_uni_fball4K_1000iters_atm’)

%reconAI = recon;

%reconAE = recone;

%load(’...Final Code\Fireball 1\data_run_1D_uni_fball4K_1000iters’)

%load(’...Final Code\Fireball 1\data_run_1D_uni_fball10K_1000iters_atm’)

%reconAI = recon;

%reconAE = recone;

%load(’...Final Code\Fireball 1\data_run_1D_uni_fball10K_1000iters’)

load(’...Final Code\Fireball 1\data_run_1D_uni_fball16K_1000iters_atm’)

reconAI = recon;

reconAE = recone;

%load(’...Fireball 1\data_run_1D_uni_fball16K_1000iters’)
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% Test data: Evolving fireballs

load(’...Final Code\Fireball Evolve\data_run_1D_fball16K_10K_4K_1000iters’)

%load(’...Final Code\Fireball Evolve\data_run_1D_fball16K_14K_12K_1000iters’)

%load(’...Final Code\Fireball Evolve\data_run_1D_fball16K_13K_1000iters’)

%load(’...Final Code\Fireball Evolve\data_run_1D_fball16K_15K_1000iters’)

% Reconstructed photons 1D

pix_loc = 127;

pixel1_r = recon(:,pix_loc) / 10; % Just looks at center pixel location of fireball.

pixel1_rAI = reconAI(:,pix_loc) / 10; % Divides by 10 as there are 10 pixels across the

pixel1_rAE = reconAE(:,pix_loc) / 10; % diameter of the fireball.

% Fundamental constants.

c = 299792458;

light_year = c * 60 * 60 * 24 * 365; % units of meters

h = 6.6260755e-34;

kB = 1.380658e-23;

% Fireball Parameters

%Projected area of a square pixel at 3258m entered in metres^2 converted to centimetres^2

A = 3.258^2 * 1000;

Dist = 3258; % Distance for fireball to sensor in meters

% Forward Optics Parameters

D = .1; % diameter of the telescope in meters;

SR = D*D*pi/(4*Dist); % Solid angle subtended by sensor to fireball range

% Detector Parameters

dt=.001; % Integration time in seconds of the CCD camera

% Guesses for static fireballs

%ball_temp_guess = 1574; % 1600K fireball @ pixel location 129

%ball_temp_guess = 1652; % 1600K fireball @ pixel location 127 1566 1652

%ball_temp_guess = 987; % 1000K fireball @ pixel location 127 1234 987

%ball_temp_guess = 424; % 400K fireball @ pixel location 127 904

%ball_temp_guess = 411; % 400K fireball @ pixel location 125

% Guesses for evolving fireballs

%ball_temp_guess = 1515; % 1600 to 1500K fireball @ pixel location 128

%ball_temp_guess = 1436; % 1600 to 1300K fireball @ pixel location 127

%ball_temp_guess = 1402; % 1600 to 1400 to 1200K fireball @ pixel location 127

ball_temp_guess = 1233; % 1600 to 1000 to 400K fireball @ pixel location 127

big_count = 1;

limit = 10;

interval = limit / 10

temp_range = -limit : interval : limit;

mask = ones(15,1);

% Mask to remove low transmission bins from calculation

%mask = [1 1 1 0 1 1 1 1 1 1 1 0 1 1 1]’;

for delta_temp = temp_range % start big for loop

truth = (ball_temp_guess + delta_temp); %units of degrees kelvin
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% Gives the spectral photon radiance [photons/sec - cm^2 - sr - um] as a

% sum of "sub_lamda" sub-bin areas in each wavelength bin.

sub_lamda = 100;

for index = 1:bins

lamda_base = lamda(index):int/sub_lamda:lamda(index) + int - int/sub_lamda;

temporary = 0;

for count = 1:sub_lamda

temporary = temporary + (2 * c * 1e14) ./ (lamda_base(count)^4 .* ...

(exp(h*c./(lamda_base(count)*1e-6*kB.*truth)) - 1)) * int/sub_lamda;

end

rad_p(index,:) = temporary;

end

% Calculates photons at detector over integration time and solid angle

photons_1 = rad_p * dt*A*SR;

% Calculates error between reconstructed photons and photons produced from temperature guess

Error_Clean(big_count) = sum((photons_1 - pixel1_r).^2)/15;

Error_Atmo_Inv(big_count) = sum((photons_1 - pixel1_rAI).^2)/15;

% Compensating low Atm coefficient bins by removal

Error_Atmo_Inv_comp(big_count) = sum(mask.*(photons_1 - pixel1_rAI).^2)/15;

Error_Atmo_Est(big_count) = sum((photons_1 - pixel1_rAE ).^2 )/15;

% Compensating low Atm coefficient bins by removal :)

Error_Atmo_Est_comp(big_count) = sum(mask.*(photons_1 - pixel1_rAE).^2)/15;

big_count = big_count+1;

end % end big for loop

% Calculates the minimum error, ie, best temperature fit to reconstructed photons

[aaa,bbb] = min(Error_Clean);

[ccc,ddd] = min(Error_Atmo_Inv);

[eee,fff] = min(Error_Atmo_Est);

[ggg,hhh] = min(Error_Atmo_Inv_comp);

[iii,jjj] = min(Error_Atmo_Est_comp);

Best_fit_clean = ball_temp_guess + temp_range(bbb)

Best_fit_Atmo_Inv = ball_temp_guess + temp_range(ddd)

Best_fit_Atmo_Est = ball_temp_guess + temp_range(fff)

Best_fit_Atmo_Inv_comp = ball_temp_guess + temp_range(hhh)

Best_fit_Atmo_Est_comp = ball_temp_guess + temp_range(jjj)

figure(3),

subplot(511), plot(temp_range,Error_Clean), grid on

subplot(512), plot(temp_range,Error_Atmo_Inv), grid on

subplot(513), plot(temp_range,Error_Atmo_Est), grid on

subplot(514), plot(temp_range,Error_Atmo_Inv_comp), grid on

subplot(515), plot(temp_range,Error_Atmo_Est_comp), grid on

toc
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